AI/ML Frameworks and Advanced Computing Resources to Accelerate Research at Texas A&M's High Performance Research Computing (HPRC) Facility

> CESG Seminar February 4, 2022

High Performance Research Computing DIVISION OF RESEARCH

High Performance Research Computing

Our Mission:

- Provide **computing** resources
- Provide consulting, technical guidance, and training to support users of these resources.
- Collaborate on computational and data-enabled research.

Credit: towardsdatascience.com

HPRC Services

- Free of charge to all faculty, postdocs, research staff, students and external collaborators
- Computing cycles for research and university course purposes
- Application is required for access
- User Services
 - Helpdesk: New user start-up assistance and general support
 - Training: Short Courses, Workshops, & YouTube videos
 - Advanced Support: Software and research consulting
 - Expertise in many science and engineering research domains
- Access to state and national advanced computing resources

High Performance Research Computing Clusters

	Grace	Terra	ViDaL
Total Nodes (Cores)	925 (44,656)	307 (8,512)	24 (1,120)
General Nodes	48 cores 384GB	28 cores 64GB	40 cores 192 GB
Features	GPUs (A100, RTX 6000, T4) Large Memory Nodes	GPUs (K80, V100) KNL	Compliant Computing GPUs (V100) Large Memory Nodes
Interconnect	HDR100 InfiniBand	Omni-Path	40Gb Ethernet
Global Disk (raw)	8.9 PB	7.4 PB	2 PB
		https://hprc.tamu.edu/resources	

High Performance Research Computing | hprc.tamu.edu

HPRC Account Allocations

Allocation Type	Who can apply?	Minimum SUs per Allocation per Machine	Maximum SUs per Allocation per Machine	Maximum Total SUs per Machine	Maximum Number of Allocations per Machine	Allowed to spend more than allocation?	Reviewed and approved by
Basic	Faculty, Post-Docs*, Research Associates, Research Scientists, Qualified Staff, Students*, Visiting Scholars/Students*	5,000	5,000	5,000	1	No	HPRC Staff
Startup	Faculty, Research Associates, Research Scientists, Qualified Staff	5,000	200,000	400,000	2	No	HPRC Director
Research (Terra)	Faculty, Research Scientists, Qualified Staff	300,000	5,000,000	5,000,000	Determined by HPRC- RAC	No	HPRC- RAC
Research (Grace)	Faculty, Research Scientists, Qualified Staff	300,000	10,000,000	10,000,000	Determined by HPRC- RAC	No	HPRC- RAC
	(

https://hprc.tamu.edu/policies/allocations.html

Students & Postdoctoral researchers can apply for a Basic allocation.

PIs can apply for a Startup or Research allocation and sub-allocate SUs to their researchers.

HPRC Account: PI Eligibility

Only **active faculty** members and **permanent research staff** (subject to HPRC-RAC Chair review and approval) of Texas A&M System Members headquartered in Brazos County can serve as a PI.

Adjunct and Visiting professors can use HPRC resources as part of a sponsoring PI's group Note that:

- A PI can have more than one allocation
- A researcher (student) can work on more than one project and with more than one PI

https://hprc.tamu.edu/policies/allocations.html

HPRC Training Short Courses https://hprc.tamu.edu/training

Primers:

Linux HPRC Clusters Data Management SLURM Jupyter Notebook

Technology Lab:

Ā M

Using AI Frameworks in Jupyter Notebook

Short Courses:

Python Scientific Python PyTorch TensorFlow MATLAB Scientific ML Julia CUDA Drug Docking Quantum Chemistry and more...

Short Courses:

NGS Analysis NGS Metagenomics NGS RADSeq/GBS NGS Assembly HPRC Galaxy Linux R Perl Fortran OpenMP MPI

Fortran (Fall 2021)

95 views · 2 months ago

Containers (Fall 2021)

30 views • 2 months ago

Differential Expression (Fall...

R (Fall 2021)

Frameworks in Jupyter...

CUDA (Fall 2021)

47 views • 1 month ago

Upcoming HPRC Short Courses

Introduction to Python

Instructor: Richard Lawrence

Time: Friday, February 18, 10:00AM-12:30PM

Location: Blocker 220 and online using Zoom

Description: Covers basic topics in programming using Python. Topics include variables, data types, control statements, functions, I/O, modules, interactive execution of python statements, python scripts, dictionaries, sorting, and regular expressions.

Prerequisites: HPRC account

View Details In-Person Attendee Registration **Remote Attendee Registration**

Introduction to Scientific Python

Instructor: Zhenhug He

Time: Friday, February 18, 1:30PM-4:00PM

Location: Blocker 220 and online using Zoom

Description: This short course covers several topics and packages for scientific programming in Python.

Prerequisites: Basic Python skills, HPRC account

Remote Attendee Registration

Upcoming HPRC training

Technology Lab: Using AI Frameworks in Jupyter Notebook

Instructor: Zhenhua He

Time: Early March

Registration available soon: https://hprc.tamu.edu/training

To help a new user start with their machine learning projects on HPRC systems

HPRC Portal

https://portal.hprc.tamu.edu

Home / My Interactive Sessions

Interactive Apps
BIO
T Beauti
∞ Gap5
∎≓ IGV
Mauve
Structure
GUI
MANSYS Workbench
Maqus/CAE (testing)
MATLAB
/// ParaView
WNC
Servers
j Jupyter Notebook
⊜ JupyterLab
RStudio
Spark-Jupyter Notebook

You have no active sessions.

Open OnDemand (OOD) Portal is an advanced web-based graphical interface for HPC users.

Interactive Apps: launch a software window right in your browser.

<u>HPRC Portal</u> YouTube tutorials

JupyterLab Portal Support

ĀМ

		e	My Interactive Sessions	× 📿 Jupyte	erLab × +		•) ×
yterLab × +		C	File Edit View Run	Kernel Tabs Se	ettings Help		M		9
C Portal-terra.hprc.tamu.	edu/pun/sys/dashboard/batch_connect/sys/jupyterlab/session_contexts/new	?	+ 🗈	± C	🖸 Launcher				
Home / My Interactive Session	s / JupylerLab	0	Name 🔺	Last Modified	AlLabs				
Interactive Apps	JupyterLab	۲	 images 01_jupyterlab.ipy 	23 minutes ago 23 minutes ago	Notebook				
T Beauti	This app will launch a JupyterLab server on the Terra cluster. Module	2	 02_data_explorati 03_machine_lear 	23 minutes ago 23 minutes ago		D			
D DIYABC	Anaconda/3-5.0.0.1 Anaconda/3-x. x.x. and Anaconda3 use Python3		04_deep_learning Al Tech Labs.pdf	23 minutes ago 23 minutes ago	Python 3	Bash			
IGV			Al Tech Labs.pptx ♥ README.md	23 minutes ago 23 minutes ago					
 Krait 	ctivated. (Optional)	-11			>_ Console				
Mauve	Leave blank to use the default environment for the selected Module. Your optional conda environment must have been previously built with one of	0			2	B			
Tracer	the Anaconda or Python modules listed in the Module option above. See instructions.				Python 3	Bash			
MANSYS Workbench	Number of hours								
					S_ Other				
		0	s. 4 🕲			in the second		1	Launch

JupyterLab Portal Support

clean up and load Anaconda cd \$SCRATCH module purge module load Python/3.7.4-GCCcore-8.3.0

create a Python virtual environment
python -m venv mylab

activate the virtual environment
source mylab/bin/activate

install required package to be used in the portal
pip install --upgrade pip setuptools
pip install jupyterlab torch torchvision tensorboard
pip install pandas scikit-plot tqdm seaborn

deactivate the virtual environment
deactivate

HPRC Portal Dashboard

https://portal.hprc.tamu.edu

igh Performance esearch Computing vision of RESEARCH	TERRA TOOLI	вох		Request Assista	nt Request Softwa
CLUSTER STATISTICS		SL	JMMARY		
Node Utilization	Accounts				
Allocated Mixed Idle	Account ↑↓	Default ↑↓	Allocation $\uparrow\downarrow$	Used ↑↓	Balance 1
	122853910111	Set Default	20000	0	20000
	122853910233	Set Default	200000	198148.06	1851.94
Core Utilization	122853913205	default	5000	-3735.43	1264.57
	122853915531	Set Default	200000	50000	150000
Jobs	Disk Quotas				
Running 505	Disk	Disk Usage	Limit	File Usage	Limit
Pending 9351	/home	2.76 GB (27.59 %)	10 GB	8882 (<mark>88.82 %</mark>)	10000
	/scratch	282.87 GB (27.62 %)	1 TB	100574 (<mark>50.29 %</mark>)	200000
	Quota Increase)			
	Your Jobs				
	Job ID ↑↓ Nan	ne î↓ State	1↓ Partition	î↓	
	7522977rd	/sys/vnc RUNNING	gpu	Log Error	Kill

A M

Containerized Jupyter Notebooks

OPEN **OnDemand**

NGC | CATALOG

NVIDIA TAO

Accelerated with

O PyTorch

PyTorch is a GPU accelerated tensor

libraries such as NumPv and SciPv....

computational framework. Functionality

can be extended with common Python

PyTorch

NVIDIA Train, Adapt, and Optimize (TAO) is an Al-model-adaptation platform that si applications and services. By fine-tuning pretrained models with custom data throu produce highly accurate models in hours rather than months, eliminating the need

Accelerated with 1 TensorFlow TensorFlow TensorFlow is an open source platform for machine learning. It provides comprehensive tools and libraries in a

flexible architecture allowing easy...

TAO Toolkit - Computer Vision Collection - Deep Learning TAO Toolkit is a python based AI toolkit for taking purpose-built pre-trained AI models and customizing them with your own data.

Home / My Interactive Sessions / Jupyter Notebook
Jupyter Notebook
This app will launch a Jupyter Notebook server on the Terra cluster.
Notice: This form has changed. Please pay attention to what options you select and what the defaults are.
Type of environment
Containers (Singularity)
Select the type of environment in which Jupyter is installed. Help me choose Path to singularity image file
/scratch/data/Singularity/images/tensorflow_2.4.1-gpu-jupyter.sif
Enter the path to a singularity image file containing the Jupyter app. Recommended that this live under your \$SCRATCH directory. (etc)

Choose "GPU" if the notebook needs to run on an Nvidia GPU node.

TAMU HPRC OnDemand (Terra)

High Performance Research Computing | hprc.tamu.edu

Node type

GPU

×

HPRC Portal - Interactive Apps

PIO		Saniora
ВЮ	GOI	Servers
T Beauti	S ANSYS Workbench	👼 Jupyter Notebook
D DIYABC	🜌 Abaqus/CAE	🥃 JupyterLab
T FigTree	IS-PREPOST	RStudio
ig≓ IGV	📣 MATLAB	😹 Spark-Jupyter Notebook
JBrowse	M ParaView	
le Krait	VNC	
🇊 Mauve		
Structure		
Tracer		
🐝 Gap5	J	

Imaging
Z AFNI
Chimera
e Coot
Diffusion Toolkit & TrackVis
FSL
🗊 Fiji
♦ ICY
ImageJ
i Vaa3D
/ 聞 A cisTEM

Available Software Modules

SOFTWARE MODULES ON THE TERRA CLUSTER

Last Updated: Mon Oct 12 00:00:02 CDT

The available software for the Terra cluster is listed in the table. Click on any software package name to get more information such as the available versions, additional documentation if available, etc.

Show 10 • entries		Search: tensorflow	
Name 🍝	Description	[mouse@terra1 ~]\$ ml spider TensorFlow	
GPflow	GPflow is a package for building Gaussian process models in pytho	TensorFlow:	
Horovod	Horovod is a distributed training framework for TensorFlow. URL: htt	Description: An open-source software library for Machine Intelligence	
Keras	Keras is a minimalist, highly modular neural networks library, writte of either TensorFlow or Theano. URL: https://keras.io/	Versions: TensorFlow/1.4.0-intel-2017A-Python-3.5.2 TensorFlow/1.5.0-foss-2017b-Python-3.6.3-03 TensorFlow/1.5.0-foss-2017b-Python-3.6.3 TensorFlow/1.5.0-fosscuda-2017b-Python-3.6.3 TensorFlow/1.5.0-rosscuda-2017b-Python-3.6.3	
segmentation-models	Python library with Neural Networks for Image Segmentation based https://github.com/qubvel/segmentation_models		
TensorFlow	An open-source software library for Machine Intelligence URL: http	TensorFlow/1.6.0-foss-2018a-Python-3.6.4-CUDA-9.1.85 TensorFlow/1.6.0-foss-2018a-Python-3.6.4	
Showing 1 to 5 of 5 entries (filtered from 1,63	6 total entries)	TensorFlow/1.7.0-foss-2018a-Python-3.6.4-CUDA-9.1.85 TensorFlow/1.7.0-foss-2018a-Python-3.6.4 TensorFlow/1.8.0-foss-2017b-Python-2.7.14 TensorFlow/1.8.0-foss-2017b-Python-3.6.3	
https://hprc.tamu.	<u>edu/software</u>	TensorFlow/1.8.0-foss-2018a-Python-3.6.4 TensorFlow/1.8.0-fosscuda-2017b-Python-2.7.14 TensorFlow/1.8.0-fosscuda-2017b-Python-3.6.3	

Available Software Modules

https://hprc.tamu.edu/wiki/SW:Modules

mla command to quickly search for installed software:

mouse@terra2 ~]\$ mla scikit-learn Using /home/mouse/module.avail.terra scikit-learn/ scikit-learn/0.18.1-intel-2017A-Python-2.7.12 scikit-learn/0.19.1-foss-2017b-Python-2.7.14 scikit-learn/0.19.1-foss-2017b-Python-3.6.3 scikit-learn/0.19.1-foss-2018a-Python-3.6.4 scikit-learn/0.19.1-fosscuda-2017b-Python-3.6.3

•••••

scikit-learn/0.21.3-fosscuda-2019b-Python-3.7.4 scikit-learn/0.21.3-intel-2019b-Python-3.7.4 scikit-learn/0.22.1-intel-2019b-Python-3.7.4 scikit-learn/0.23.1-foss-2020a-Python-3.8.2 scikit-learn/0.23.1-intel-2020a-Python-3.8.2 scikit-learn/0.23.1-intel-2020a-Python-3.8.2 scikit-learn/0.23.1-intelcuda-2020a-Python-3.8.2 scikit-learn/0.23.2-foss-2020b scikit-learn/0.23.2-intel-2020b scikit-learn/0.23.2-intelcuda-2020b Python Matlab Keras PyTorch scikit-learn Pandas NumPy Matplotlib Julia

••••

Compilers: C++, Fortran, Intel OneAPI, GNU, ... CUDA, OpenCL OpenMPI, IntelMPI

Advanced Support Program

Collaborations on computational research projects.

HPRC analysts can contribute expertise in:.

- Software development for research workflows
- Developing GUIs and apps for research projects
- Porting applications to HPC clusters
- Code development, optimizing and analysis on serial and parallel platforms
- Leveraging mathematical libraries
- Workflow automation in scientific processes

Please send us an e-mail: help@hprc.tamu.edu

ASP is supported in part by NSF award #<u>1925764</u>, CC* Team: SWEETER -- SouthWest Expertise in Expanding, Training, Education and Research and NSF award #<u>2112356</u>, Category II: ACES - Accelerating Computing for Emerging Sciences

NSF MRI FASTER

Fostering Accelerated Scientific Transformations, Education, and Research

- **Composable** software-hardware approach
- 184-Intel Ice Lake nodes (11,520-core) with InfiniBand. (64-core, 256GB memory, and 3.84TB NVMe disk per node)
- NVIDIA GPUs: 200x T4, 40x A100, 10x A10, 4x A30, and 8x A40 GPUs
- Each node can compose up to 20 GPUs.

This project is supported by NSF award #2019129

High Performance Computing (HPC) Architecture Comparison

Legacy HPC

- Built on Converged HW
- Static Hardware Design
- Fixed GPUs/Accelerators
- Fixed Memory
- Legacy Storage: SATA and SAS

PAST

Modern HPC

- Built on Disaggregated HW
- Composable Hardware Platform
- Composable GPUs/Accelerators
- Composable Memory Optane
- Modern Storage: NVMe-oF

Modern HPC Platforms Support Composable GPUs/Accelerators and Memory

HPC

Since 1987 - Covering the Fastest Computers in the World and the People Who Run Them

- Home
- Technologies
- Sectors
- COVID-19
- AI/ML/DL
- Exascale
- Specials
- Resource Library
- Podcas
- Events
- Job Bank
- About
- Our Authors
- Solution Channels
- Subscribe

Three Universities Team for NSF-Funded 'ACES' Reconfigurable Supercomputer Prototype By Oliver Peckham

September 23, 2021

As Moore's law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana-Champaign and the University of Texas at Austin have teamed, with NSF funding, to build a \$5 million prototype supercomputer ("ACES") with a dynamically configurable smörgåsbord of hardware, aiming to support developers as hardware needs grow ever more diverse.

ACES (short for "Accelerating Computing for Emerging Sciences") is presented as an "innovative composable hardware platform." ACES will leverage a PCIe-based composable framework from Liqid to offer access to Intel's high-bandwidth memory Sapphire Rapids processors and more than 20 accelerators: Intel FPGAs; NEC Vector Engines; NextSilicon co-processors; Graphcore IPUs (Intelligence Processing Units); and Intel's forthcoming Ponte Vecchio GPUs. All this hardware will be coupled with Intel Optane memory and DDN Lustre Storage and connected with Mellanox NDR 400Gbps networking.

ACES - Accelerating Computing for Emerging Sciences ACES is an innovative advanced computational prototype to be

"ACES will enable applications and workflows to dynamically integrate the different accelerators, memory, and in-network computing protocols to glean new insights by rapidly processing large volumes of data," the <u>NSF grant</u> reads, "and provide researchers with a unique platform to produce complex hybrid programming models that effectively supports calculations that were not feasible before."

University partnering with TACC

developed by Texas A&M

and UIUC.

https://www.hpcwire.com/2021/09/23/three-univers ities-team-for-nsf-funded-aces-reconfigurable-sup ercomputer-prototype/

This project is supported by NSF award #2112356

ACES System Description

Component	Quantity	Description
Allocatable resources		Total cores: 11,520
CPU-centric computing with variable memory requirements	120 nodes (11,520 cores)	Dual Intel Sapphire Rapids 2.1 GHz 48 core processors with HBM2e memory 96 cores per node, 512 GB memory, 1.6 TB NVMe storage (PCIe 5.0), NVIDIA Mellanox NDR 200 Gbps Infiniband
Composable infrastructure	120 nodes	Dynamically reconfigurable infrastructure that allows up to 20 PCIe cards (GPU, FPGA, VE, etc.) per compute node
Data transfer nodes	2 nodes	Same as compute nodes, 100 Gbps network adapter

ACES - Accelerating Computing for Emerging Sciences (To be deployed in 2022)

Component	Quantity*	Description
<u>Graphcore IPU</u>	16	16 IPUs direct-attached to a server
Intel Agilex FPGA	20	Agilex FPGA with a broad hierarchy of memory including DDR5, HBM2e and Optane Persistent Memory
NextSilicon coprocessor	20	Reconfigurable accelerator with an optimizer continuously evaluating application behavior.
NEC Vector Engine	24	Vector computing card with 8 cores and HBM2 memory
Intel Ponte Vecchio GPU	100	Intel GPU for HPC, DL Training, Al Inference
<u>Liqid Intel Optane PCIe SSDs</u>	6	3 TB PCIe SSD cards addressable as memory using Intel Memory Drive Technology

*Estimated quantities

A M

Graphcore IPUs (Intelligence Processing Unit)

https://www.graphcore.ai/posts/accelerating-resnet50-training-on-the-ipu-behind-our-mlperf-benchmark

Ā M

2. IMPORT THE TENSORFLOW IPU MODULE

First, we import the TensorFlow IPU module.

Add the import statement in Listing 2.1 to the beginning of your script.

Listing 2.1 Importing ipu Python module

from tensorflow.python import ipu

For the ipu module to function properly, we must import it directly rather than accessing it through the top-level TensorFlow module.

3. IPU CONFIG

To use the IPU, you must create an IPU session configuration in the main process. A minimum configuration is in Listing 3.1.

Listing 3.1 Example of a minimum configuration

ipu_config = ipu.config.IPUConfig()
ipu_config.auto_select_ipus = 1 # Select 1 IPU for the model
ipu_config.configure_ipu_system()

This is all we need to get a small model up and running. A full list of configuration options is available in the Python API documentation.

4. MODEL

https://docs.graphcore.ai/en/latest/

Specialized Training

INTEL DEVELOPER TOOLS TRAINING INTEL AI ANALYTICS TOOLKIT

Texas A&M University

January 21, 2022, 1:30 p.m. - 4:00 p.m. CST

Texas A&M High Performance Research Computing is inviting you to an online workshop to get introduced to Intel AI software and the performance benefits achieved from using the Intel optimizations. This workshop will be presented by Intel engineers. Participants will receive a certificate of completion from Intel.

Agenda

The workshop will cover Intel optimizations implemented on top of stock versions of data science libraries like NumPy, SciPy, Scikit Learn, and DL frameworks like Tensorflow and Pytorch. Hands on exercises will be followed to showcase how to get started using Intel AI software and the performance benefits achieved from using Intel optimizations.

- · Lecture What is oneAPI AI Analytics Toolkit 10 min
- Intel Distribution for Python (IDP)
- Skill Level High level understanding of some data science Python libraries, Python beginner level
- Overview of optimizations inside Python 5 mi
- Exercise complete with instructo 20 mi
- Exercise URL https://github.com/mtolubaeva/numpy-tests
- · Individual time to complete exercise, Q&A 5 min
- Expected Outcome be able to see the performance benefit of using IDP libraries over stock Python libraries like NumPy, SciPy etc.
- · Intel Extensions for Scikit Learn
- Skill Level High level understanding of Scikit Learn library, Python beginner level
- Overview of optimizations inside SciKit Learn 5 min
- Exercise complete with instructor 20 min.
- Exercise URL https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-Functionality/IntelScikitLearn_Extensions_SVC_Adult
- Individual time to complete exercise, Q&A 5 min
- Expected Outcome be able to run an SVC algorithm with Intel Extension for

https://hprc.tamu.edu/events/workshops/

Partnering on Outreach

Leverage our programs to strengthen your broader impacts

- Teach a short course on computing to the TAMU community.
- Become an instructor in the Summer Computing Academy program camps for middle and high school students.
- Join the the NSF SWEETER CyberTeam to explore computing-driven research and educational partnerships with universities in Texas, New Mexico and Arizona.
- Participate in the NSF BRICCs community to support research computing at smaller institutions and community colleges.
- Make your computing products available on the NSF ACES, NSF FASTER, and NSF Frontera machines.
- Mentor our students in international Student Cluster Competitions.

High Performance Research Computing DIVISION OF RESEARCH

<u>hprc.tamu.edu</u>

HPRC Helpdesk:

help@hprc.tamu.edu Phone: 979-845-0219

