

Spotlights: Research Expedited by HPC

Predictive Simulations of Crash Impacts Using HPRC : The Short Radius Example

Akram Abu-Odeh

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Acknowledgment

- Research Team (Past and Present)
 - Katherine McCaskey
 - Michael Bychkowski,
 - Matthew Spencer,
 - Ryan Allcorn
 - Ivan Liu,
 - Marsha Palasota,
 - Kelly Ha
 - Brett Jackson
 - Conor Mitchell
- Texas Department of Transportation (TxDOT)
- Texas A&M Transportation Institute (TTI)
- High Performance Research Computing (Texas A&M University)

Texas A&M Transportation Institute

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

What are Roadside Safety Devices?

- Roadside Safety Devices: used to shield, contain and redirect vehicles away from roadside hazards
- Roadside Hazards include both fixed objects and nontraversable roadside features

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Evaluation Methodologies

- Testing standards have evolved over the course of history based on crash test data
 - Vehicle fleet
 - Roadway Velocity
 - Departure/Encroachment angle
- The Manual for Assessing Safety Hardware (MASH) is the new state of the practice for the crash testing of safety hardware devices for use on the National Highway System (NHS)
- Federal Highway Administration (FHWA) has required that all new roadside safety hardware for which a Federal-aid reimbursement eligibility letter is sought be tested to MASH criteria*

*http://safety.fhwa.dot.gov/roadway_dept/policy_guide/road_hardware/policy_memo/memo111215/

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Develop a MASH Test Level-3 Short Radius System

- A short radius is a guardrail setup for intersecting roadways
- What do we need from a short radius
 - Containment
 - Vehicle capture and prevention of override or underride
 - Redirection
 - Deflection/Stoppage distance
 - Yet simple to construct

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Short-Radius Project

Dissection of Short-Radius Functional Need

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Short-Radius Project

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Short-Radius – Previous Work

TTI-Thrie Beam System

Test 414424-2 (4400 lb pickup truck/62 mph/25 degrees) (Failed to contain the test vehicle)

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Short-Radius – Previous Work

Midwest Roadside Safety Facility

- Full-Scale Testing SR-1 (NCHRP Report No. 350)
 - 4400 lb pickup truck (2000P)/61.5 mph/19 degrees (failed vehicle penetration)

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Finite Element Methodology

- Develop confidence in the model through
 - Material testing
 - Small component calibration
 - Full (previous) tests calibration
- Design safety device based on safety requirements defined in safety design manuals and based on previous research
- Multiple Simulation of concepts
- Choose best finite element model that represents the chosen design
- Run detailed finite element simulation to determine adequacy of new safety device for full-scale crash testing.

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Finite Element Methodology

- LS-DYNA[®] from Livermore Software Technology Corporation (LSTC)
 - Explicit and Implicit dynamic time step integration
 - Library of highly nonlinear materials and robust contacts
 - Highly scalable on HPRC (MPP using Intel MPI protocol)
 - Available vehicle models and variety of pre- and post-processing software
- Explicit modeling of the railing components were included in the models
- Material models include elastic-plastic behavior
- Materials used are steel (different grades, sand, wood and plastic)
- Sand is modeled using smooth Particles Hydrodynamics (SPH)
- Bolts are explicitly modeled and pre-tensioned to provide the physical clamping among parts

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Short-Radius on Flat Terrain

Recommended Test Matrix

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Truck TL 3-33: Flare and 700-lb Sand Barrels Spread Out

MASH 3-33 Truck Into Radius Nose (700 lb/barrel) Spread Time = 0

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Truck TL 3-33: Flare and 700-lb Sand Barrels Spread Out

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Sand Barrel Impact on Stability

No Sand Barrels

With Sand Barrels

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Recommended System Details

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

System Installation

(based on the design developed by simulation)

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Truck TL 3-33: Predictive Simulation and Subsequent Crash Test

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Conclusion

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Finite Element Methodology

- Simulations were conducted on TAMU HPRC machines EOS and ADA using 32 cores to 100 cores per job
- Wall clock time ranges from 26 hours to 56 hours depending on the size of the model and the simulation termination time (0.8 seconds to 1.7 seconds)
- Domain decomposition is utilized for MPI scalability.
- Special decomposition for sand (SPH) was used to spread the simulation effort along equally across the utilized cores (along with the Lagrangian parts)

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Finite Element Methodology

Vehicle with barrier model setup (showing all parts)

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Finite Element Methodology

 Vehicle with barrier model (showing decomposition for 80-cores on ADA)

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Conclusion

- Predictive simulations on HPRC was used to design and test five impact scenarios of high speed vehicular tests on roadway barrier
- The barrier design for a short radius that has been elusive to achieve for many years
- A 3TO1 ditch what excavated one foot behind the barrels edge for the last two tests
- All these tests are considered pass according to MASH evaluation criteria.

Akram Abu-Odeh, Ph.D., Research Scientist Roadside Safety & Physical Security Division, Texas A&M Transportation Institute

Thank You!

Akram Abu-Odeh, Research Scientist Roadside Safety & Physical Security Division Texas A&M Transportation Institute <u>abu-odeh@tamu.edu</u> +1 979-862-3379

