High Performance Research Computing

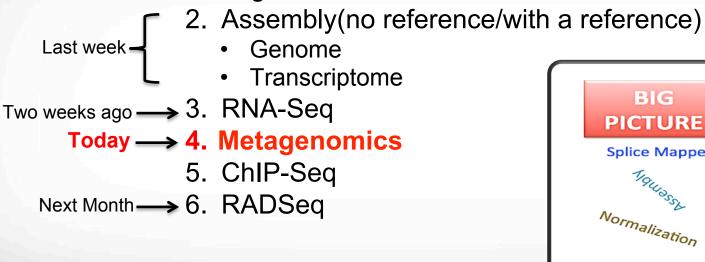
A Resource for Research and Discovery

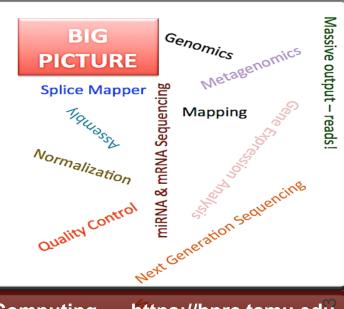
Introduction to Metagenomics Analysis for Next Generation Sequencing Data

Noushin Ghaffari, PhD

Bioinformatics Scientist, Genomics and Bioinformatics, Texas A&M AgriLife Research Research Scientist, Texas A&M High Performance Research Computing

Outline


- Background
 - Sequencing
- Application of Next Generation Sequencing in Research
 - Metagenomics



2

Primary NGS Applications

1. Alignment

Why sequencing?

Determining the sequence of nucleotides within a DNA (or RNA) fragment

4

How?

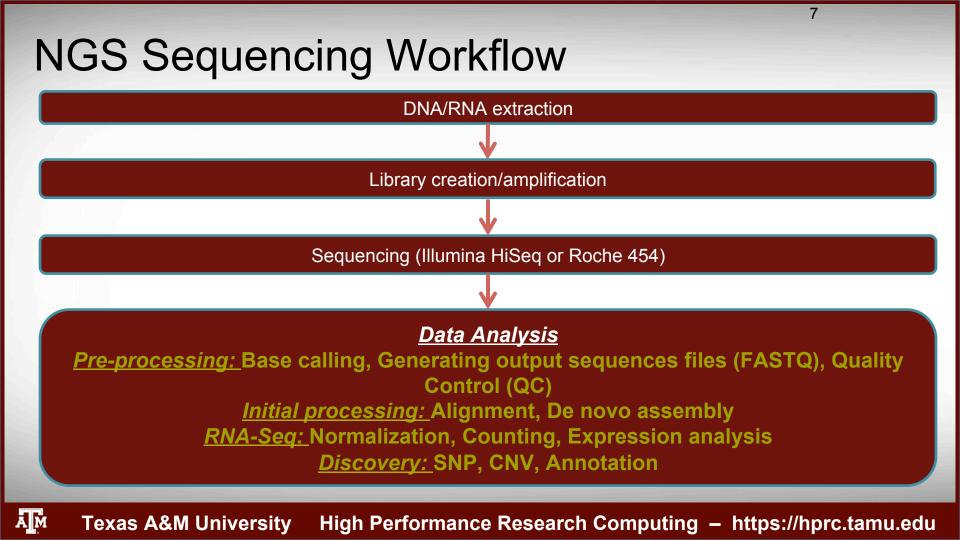
Using sequencing methods, such as Sanger sequencing, next generation sequencing and single-molecule techniques

Classic Sequencing

Third Generation Sequencing Platforms

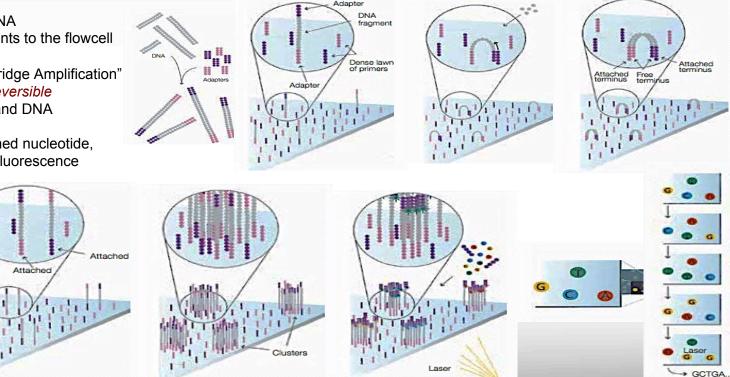
PacBio

5



Choosing among Illumina Sequencers

6


http://core-genomics.blogspot.com/2016/01/meet-newest-members-of-family-miniseq.html

Illumina next-generation sequencing

Sequencing by Synthesis (SBS) Technology

- Randomly shearing DNA
- Attaching DNA fragments to the flowcell surface
- Cluster generation, "Bridge Amplification"
- Adding four labelled reversible terminators, primers, and DNA polymerase
- Determining the attached nucleotide, based on the emitted fluorescence

Sequence and Quality Scores

Quality scores adapter sequence measure the G +В probability that a base = С 0 (a)sequence is called incorrectly. fragment D Α G E G G A flow-cell surface adapter sequence **Quality Score** Read

Comparing Sequencing Platforms

	Read length	Error rates	Technology	Portable?
Illumina	< 400 bp	Low	Sequencing by synthesis	No
PacBio	~ 10-15 Kb	High	SMRT – ZMW	No
Oxford Nanopore Technologies	~ 5-8 Kb	High	Nanopore protein – strand sequencing	Yes

Metagenomics

What is Metagenomics?

Study of communities of microbial organisms directly in their natural environments Without the need for isolation and lab cultivation of individual species

Moved from traditional BAC cloning to NGS long reads or high coverage short reads

Metagenomics Techniques

- 1. Whole Genome Shotgun (WGS)
- 2. Marker Gene
 - 16S rRNA
 - Bacteria, Archaea
 - 18S rRNA
 - Fungus, Eukaryotes

Whole Genome Shotgun (WGS) Metagenomics

- Sequencing the whole genome of the organisms present in the sample
- Facilitates discovering gene/gene function, genome structure
- Studying the evolutionary relationships for microbiomes

Whole Genome Shotgun (WGS) Metagenomics

- Sequencing the whole genome of the organisms present in the sample
- Facilitates discovering gene/gene function, genome structure
- Studying the evolutionary relationships for microbiomes
- Steps
 - Genome Assembly
 - Binning
 - Predicting and Annotating Genes

WGS Metagenomics Tools

Assembly

- Velvet, MetaVelvet, MetaVelvet-SL
- IDBA-UD

Ă M

- MetAMOS pipeline: selecting assembly, scaffolding, annotating
- Genome Assemblers such as ALLPATHS, SOAP and ABySS

Binning

- LikelyBin
- PHYSCIMM
- MetaCluster
- MetaWatt
- MetaPhyler
- PhymmBL

Annotation

- MetaGeneAnnotator
- Glimmer-MG
- FragGeneScan
- MetaGeneMark
- Kraken

Marker Gene Metagenomics

- Usually based on 16S RNA
 - Conserved within species
 - Greatly different between species
 - Widely used for microbial ecology
- Needs a reference database to match the Operational Taxonomic Units (OTU)
 - Silva
 - Ribosomal Database Project
 - Unite
- Steps
 - Preprocessing to remove noise
 - OUT clustering and taxonomic assignment
 - Alpha diversity analysis within sample diversity
 - Beta diversity analysis between sample diversity

Marker Gene Metagenomics Tools

Microbial community

analysis

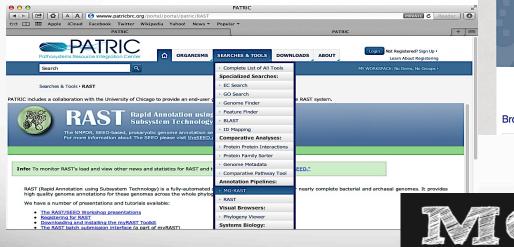
- QIIME
- Mother
- SILVAngs
- MG-RAST
- MEGAN

Diversity analysis

- Chao
- UniFrac
- PCoA

Visualization

- QIIME
- MEGAN
- FigTree

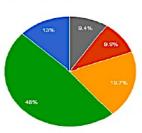

Metagenomics Studies


- PathoMap
 - Research project by <u>Weill Cornell Medical College</u> to study the microbiome and metagenome of the built environment of NYC
- Cow rumen microbiome study
 - 220 bacterial and archaeal genomes assembled directly from 768 GB rumen sequenced data
 - Majority unsequenced strains and species of bacteria and archaea
 - Over 13,000 proteins predicted to be involved in carbohydrate metabolism, over 90% of which do not have a good match in the public databases
 - Assembly of hundreds of microbial genomes from the cow rumen reveals novel microbial species encoding enzymes with roles in carbohydrate metabolism

Metagenomics Web-Based Tools

MG-RAST

- Available tools, via PATRIC
- RAST: Rapid Annotation using Subsystem Technology Annotating the assembled contigs of a bacterial and archaeal aenomes
- Quantitative insights for microbial populations, based on NGS data

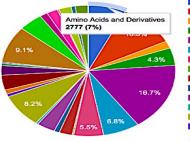

High Performance Research Computing – https://hprc.tamu.edu Texas A&M University

MG-RAST Pipeline

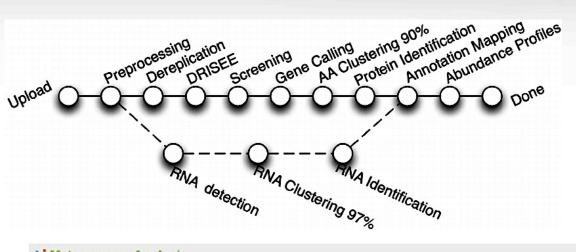
Sequence Breakdown

21

A M



Failed QC


Subsystems Download chart data has 42,515 predicted functions

79.8% of predicted proteins 104.4% of annotated proteins View Subsystems interactive chart

Amino Acids and Deriv... Carbohydrates Cell Division and Cell ... Cell Wall and Capsule Clustering-based subs... Cofactors, Vitamins, P... DNA Metabolism Dormancy and Sporul... Fatty Acids, Lipids, an... Iron acquisition and m... Membrane Transport Metabolism of Aromati... Miscellaneous Motiliity and Chemotaxis

🔺 1/2 🔻

Metagenome Analysis

Data Type	2 Data Selection					
ORGANISM ABUNDANCE	Metagenomes	4478643	.3 +			
Representative Hit Classification	Annotation Sources Max. e-Value Cutoff	M5NR 1e-5	•			
»Best Hit Classification	Min. % Identity Cutoff Min. Alignment Length Cutoff	60 % 15	•			
Lowest Common Ancestor	Workbench	use features from workbench				
FUNCTIONAL ABUNDANCE						
Hierarchical Classification	③ Data Visualization	-	-		1	
All Annotations				3	E	
OTHER	800 Sto			. : *	F	
Recruitment Plot	barchart Otree	 table 	heatmap	PCoA		generate

From UniFrac to FastUniFrac

● ○ ○	Galaxy	H.
	unifrac.colorado.edu PRIVATE C Reader	0
↔ □ IIII Apple iCloud Fac	ebook Twitter Wikipedia Yahoo! News 🔻 Popular 👻	+
	72 matches 🔳 🔍 map 💿	Done
– Galaxy	Analyze Data Workflow Shared Data - Visualization - Help - User - Using 0 b	ytes
Tools		۰
search tools	O) Unnamed history	
Get Data	Fast UniFrac is a new version of UniFrac that is specifically designed to 0 bytes	
FastUniFrac	tools for the comparison of microbial communities using phylogenetic information. It takes as input a single phylogenetic tree that contains sequences derived from at least three different environmental samples, a file prior version "environment file," and an (optional) category mapping describing additional relationships between samples and subcategories for visualizations. For example, in a given set of gut samples, you might define subcategory for different trees, different physical locations/dates, different subcategory for different trees, different physical locations/dates, different click here. For clatation, click here. Both the Unifrac distance metric and the P test can be used to make comparisons. Both of these techniques bypass the need to choose operational	
	taxonomic units (OTUS) based on sequence divergence prior to analysis. Fast UniFrac allows you to:	
<	Determine if the samples in the input phylogenetic tree have significantly different microbial communities. Cluster samples to determine whether there are environmental factors (such as temperature, pH, or salinity) that group communities together. Determine whether system under study was sampled sufficiently to support cluster nodes.	>

FastUniFrac

- Adapted for NGS data 7
- Incorporated with Galaxy 7 tools
- 7 The same idea as UniFrac

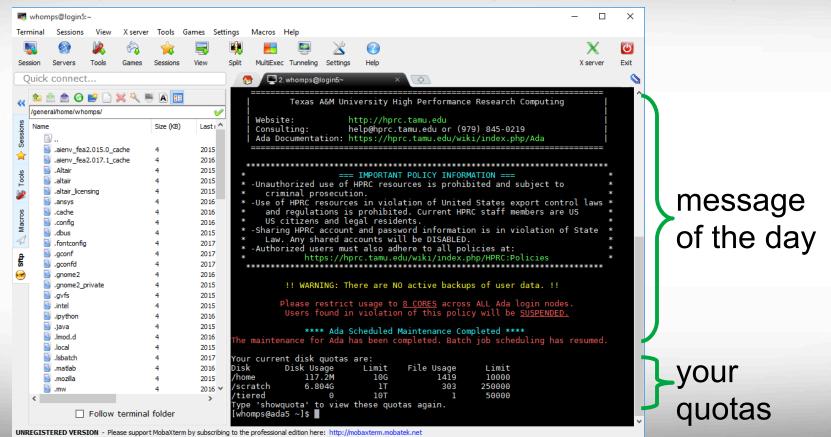
UniFrac

Calculates distance between microbial communities, using phylogenic trees

UniFrac vs FastUniFrac

- Input: tree
- Newick (PHYLIP package output) or Nexus (TAXA, CHARACTER, DATA, TREE blocks (Newick format))
- Tagging each sequence's environment, Creating Sample ID map
- Analysis
- Measuring the overall difference between each pair of environments
- Clustering the environments Principal Coordinates Analysis (3D in FastUniFrac)

M Hamady, C Lozupone and R Knight, "Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data", The ISME Journal 4, 17-27 2010.


High Performance Research Computing – https://hprc.tamu.edu Texas A&M University

Practical Portion

Logging in to the system

- SSH (secure shell)
 - The only program allowed for remote access; encrypted communication; freely available for Linux/Unix and Mac OS X hosts;
- For Microsoft Windows PCs, use *MobaXterm*
 - https://hprc.tamu.edu/wiki/HPRC:MobaXterm
 - You are able to view images and use GUI applications with MobaXterm
 - or *Putty*
 - https://hprc.tamu.edu/wiki/HPRC:Access#Using_PuTTY
 - You can not view images or use GUI applications with PuTTY
- Both state of Texas law and TAMU regulations prohibit the sharing and/or illegal use of computer passwords and accounts
- Don't write down passwords
- Don't choose easy to guess/crack passwords
- Change passwords frequently

Using SSH - MobaXterm (on Windows)

Texas A&M University

High Performance Research Computing – https://hprc.tamu.edu

Using SSH to Access Ada

ssh -X user_NetID@ada.tamu.edu

https://hprc.tamu.edu/wiki/Ada:Access

You may see something like the following the first time you connect to the remote machine from your local machine: Host key not found from the list of known hosts. Are you sure you want to continue connecting (yes/no)?

Type yes, hit enter and you will then see the following: Host 'ada.tamu.edu' added to the list of known hosts. user_NetID@ada.tamu.edu's password:

Metagenomics Practice - Tool

Mothur

- Open-source
- Serves the microbial ecology community
- DOTUR and SONS programs
- Data: Sanger, PacBio, IonTorrent, 454, and Illumina MiSeq and HiSeq
- Most cited bioinformatics tool for analyzing 16S rRNA gene sequences
- Our practical session will use Mothur to demonstrate a typical MiSeq data analysis

Metagenomics Practice - Data

- Objective: Understanding the effect of normal variation in the gut microbiome on host health
- Collected 365 (daily basis) fresh feces from mice, post weaning
- No treatment in first 150 days post weaning (dpw)
- Question: rapid change in weight observed during the first 10 dpw affected the stability microbiome when compared with microbiome in days 140 – 150 or not?
- Mock community composed of genomic DNA from 21 bacterial strains

one animal at 10 time points

group	time
F3D0	Early
F3D1	Early
F3D141	Late
F3D142	Late
F3D143	Late
F3D144	Late
F3D145	Late
F3D146	Late
F3D147	Late
F3D148	Late
F3D149	Late
F3D150	Late
F3D2	Early
F3D3	Early
F3D5	Early
F3D6	Early
F3D7	Early
F3D8	Early
F3D9	Early

Looking at Data!

cd /scratch/training/NGS_metagenomics
ls -1
cd Data
ls -1
cd MiSeq_SOP
ls -1
head -n 16 F3D1_S189_L001_R1_001.fastq

Running Mothur

Loading modules and calling the program

module load VSEARCH/2.3.0-intel-2016a \
Mothur/1.38.1.1-intel-2016a-Python-2.7.11
mothur

To run the preprocessing script

cd /scratch/training/NGS_metagenomics/Data/MiSeq_SOP mothur preprocessing.batch

Login and Set up

- Login to Ada using SSH or MobaXterm
- Let's take a look at the path and create appropriate directories

```
echo $SCRATCH
cd $SCRATCH
Pwd
mkdir NGS_assembly_Oct17
mkdir NGS_assembly_Oct17/Data
mkdir NGS_assembly_Oct17/Scripts
mkdir NGS_assembly_Oct17/Outputs
```

Preprocessing of the Data

cd /scratch/training/NGS_metagenomics/Outputs ls -1

Processes done by pre-processing script:

- Making contigs for PE input data
- Mapping to reference
- Checking the alignment output
- Removing chimeras
- Assessing error rates

Analyzing Data

cd /scratch/training/NGS_metagenomics/Scripts
ls -1

Use either methods to look at the file and copy/paste the codes

cp /scratch/training/NGS_metagenomics/\
Scripts/Analysis_Commands.txt \$SCRATCH
cd \$SCRATCH
cat Analysis_Commands.txt

Scp <u>username@ada.tamu.edu:path-to-script</u> .

FigTree Visualization

- Login to Ada using SSH using "-X"
- Move to the correct directory (alternatively, you can add the path to your \$PATH)

cd /scratch/training/NGS_metagenomics/FigTree/lib java -Xms64m -Xmx512m -jar figtree.jar \$*

- FigTree window will appear on your screen
- Use File \rightarrow Open to open a tree file (.tre)

Any question? nghaffari@tamu.edu

35