While you wait

- 1. Connect to TAMU VPN and Login to Grace ssh <username>@grace.tamu.edu
- 2. Go to your scratch directory cd \$SCRATCH
- 3. Clone the notebook repository from github git clone https://github.com/abishekg7/python_geos.git

(OR)

Copy notebooks from Grace scratch cp -r /scratch/training/python_geos/notebooks.

Python Tools for Geosciences

Fall 2021 HPRC Short Course Nov 5, 2021

Abishek Gopal
Assistant Research Scientist
iHESP, Texas A&M Oceanography
Texas A&M High Performance Research Computing

Expectations for this course

- Get an overview of some recent Python libraries designed to support geoscientific analysis
- Learn about the data structures in xarray, how to load and visualize netCDF files, and some basic operations

- Explore other geoscience packages built on top of xarray
- Intended to be a starting point for switching your workflow to Python

Helpful HPRC resources

- Grace quick start guide
 - https://hprc.tamu.edu/wiki/Grace:QuickStart
- Introduction to HPRC Short course
 - https://hprc.tamu.edu/training/intro_hprc.html
- Submit tickets to help@hprc.tamu.edu

Upcoming relevant HPRC short courses

- Nov 12: Introduction to Fortran
 - Instructor: Abishek Gopal
 - Time: Friday, Nov 12, 10:00AM 12:30PM
- Nov 19: Introduction to R
 - Instructor: Ridham Patoliya
 - Time: Friday, Nov 19, 10:00AM 12:30PM
- Nov 19: Introduction to Julia
 - Instructor: Jian Tao
 - Time: Friday, Nov 19, 1:30PM 4:00PM

https://hprc.tamu.edu/training/index.html

Acknowledgements

- Course materials adapted from detailed xarray, xgcm and Siphon tutorial notebooks
 - https://github.com/xarray-contrib/xarray-tutorial
 - https://gallery.pangeo.io/repos/xgcm/xgcm-examples/
 - https://unidata.github.io/siphon/latest/examples/index.html
- The HPRC team supporting the short course operations
- Sanjiv R., Steve Y., Fred C., Dapeng Li (iHESP)

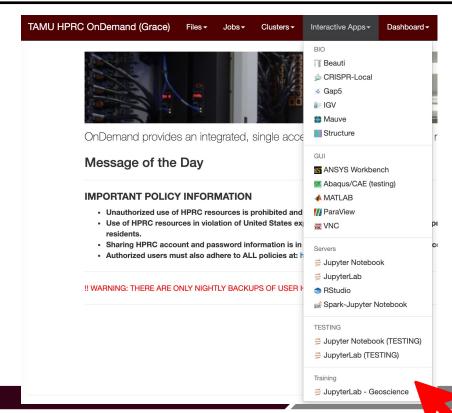
Kristen Thyng (previously: TAMU, now: Axiom Data Science)

Launching a JupyterLab notebook from Grace portal

1. Go to https://portal.hprc.tamu.edu/

2. Interactive Apps -> JupyterLab Geoscience

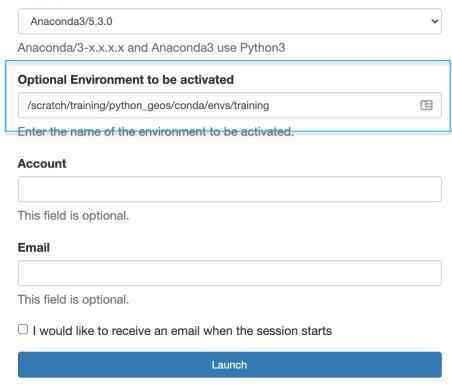
TAMU HPRC OnDemand Homepage



Terra OnDemand Portal

Grace OnDemand Portal

OnDemand Portal User Guide



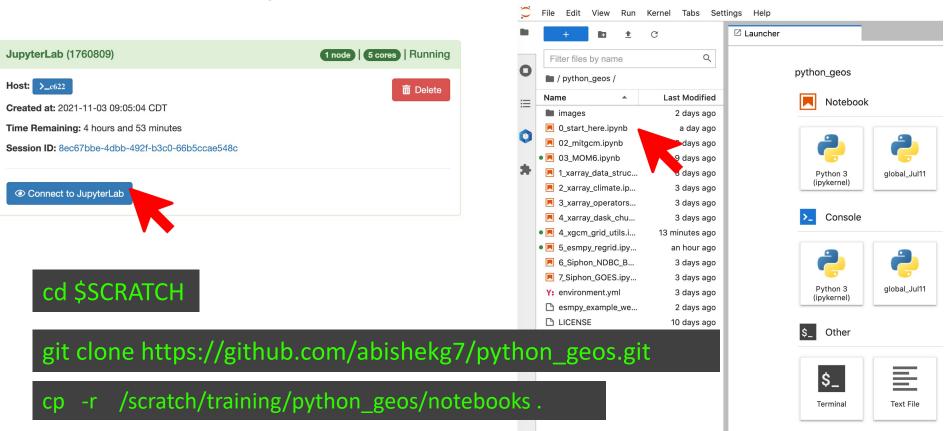
Python Tools for Geosciences - HPRC Short Course - Fall 2021

JupyterLab - Geoscience

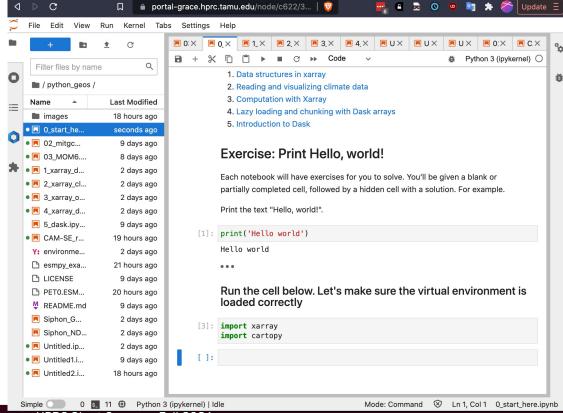
Module

This app will launch a JupyterLab server on the Grace cluster for the Python Tools for Geosciences short course.

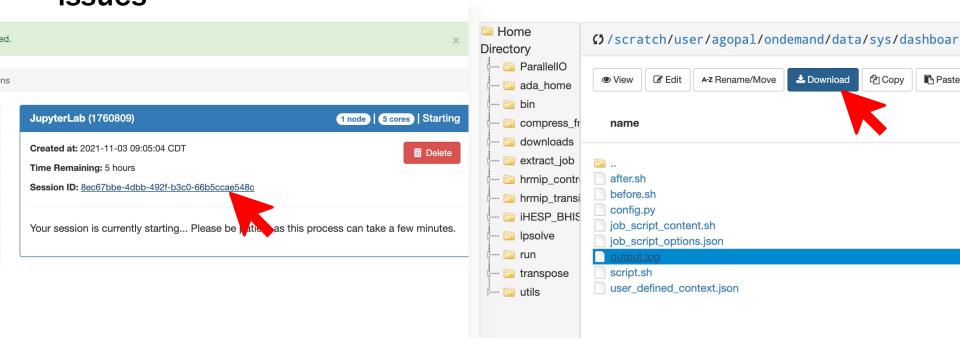
Check environment path


/scratch/training/python_geos/conda/envs/training

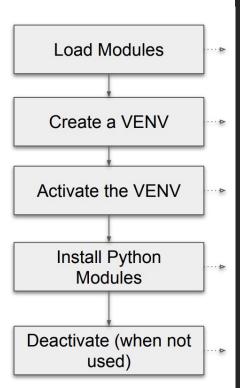
^{*} The JupyterLab - Geoscience session data for this session can be accessed under the data root directory.



Connect to JupyterLab session

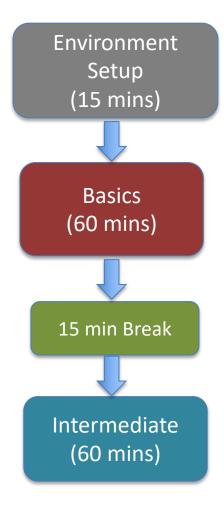


Check if the virtualenv works correctly


In case of session not starting or virtualenvissues

Email output.log to help@hprc.tamu.edu

Conda virtual environment


cd \$SCRATCH # Load Anaconda ml Anaconda3/2020.07

Create the virtual environment conda create python=3.7 -n training -c conda-forge

Activate the virtual environment source activate training

Install packages into the virtual environment conda install -c conda-forge cartopy matplotlib xarray conda install -c conda-forge xgcm dask esmpy

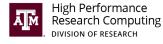
Deactivate the environment source deactivate

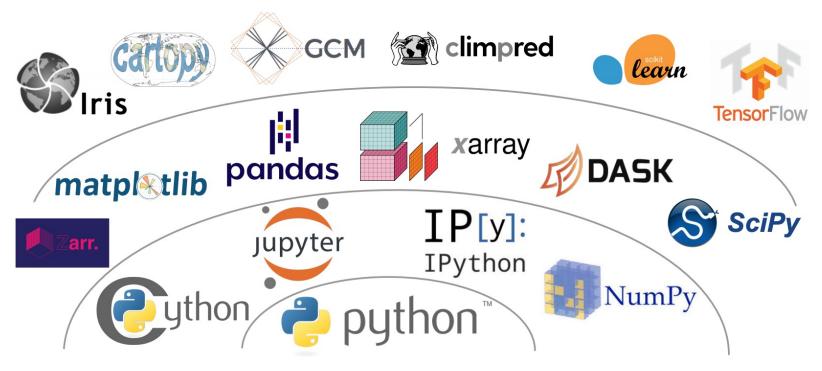
Course outline

- Intro to the Pangeo stack
- xarray data structures
- Reading and writing netCDF files
- Plotting with matplotlib and cartopy

- Spatial operations in xgcm
- Vertical interpolation in xgcm
- ESMPy regridding/remapping
- Data access using Siphon

Current/last generation of post-processing tools

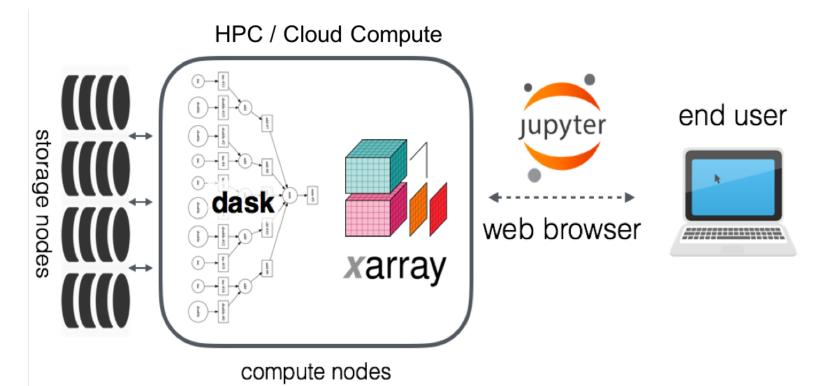




 Mature tools/languages for working with moderate resolution datasets

- Often optimized to do specific tasks really well/fast.
- Not designed with high-resolution datasets in mind.

Python geo-scientific software stack



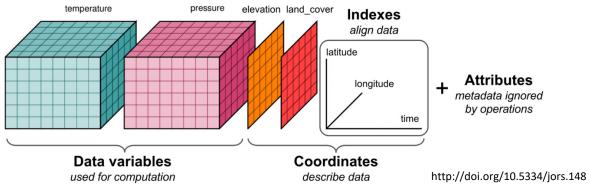
Credit: Ryan Abernathey. Inspired by Jake VanderPlas PyCon 2019

Pangeo

https://pangeo.io/architecture.html

BUILD YOUR OWN PANGEO

Storage Formats	H	OPeNDAP	Cloud Optimized COG/Zarr/Parquet/etc.
ND-Arrays	NumPy	DASK	More coming
Data Models	xarray	Iris	$egin{array}{c} pandas \ _{y_i t = eta' x_{it} + \mu_i + \epsilon_{it}} \ \hline egin{array}{c} label{eq:pandas} \end{array}$
Processing Mode	Jupyter Interactive	Batch	Serverless
Compute Platform	HPC HFYFNAF	Cloud Google Cloud Platform	Local


https://www.ecmwf.int/sites/default/files/

elibrary/2018/18737-why-pangeo-what-it-and-why-we-need-it.pdf

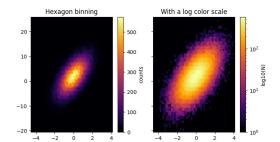
"pandas for N-dimensional arrays"

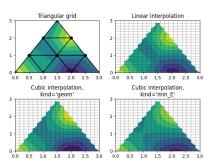
- Builds on NumPy by applying metadata such as dimensions, coordinates, data variables and attributes to raw NumPy arrays.
- Inherits Pandas functionality
- xarray.Dataset is an in-memory representation of the netCDF file format
- xarray works seamlessly with the dask library to enable parallel computations more easily

Apply operations over named dimensions

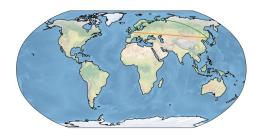
Select values by label or logical conditions, instead of integer location

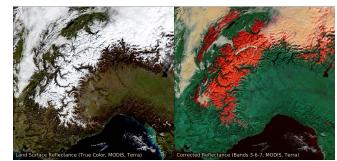
Easily use the <u>split-apply-</u> <u>combine</u> paradigm with groupby


Keep track of arbitrary metadata in the form of a Python dictionary


x.attrs

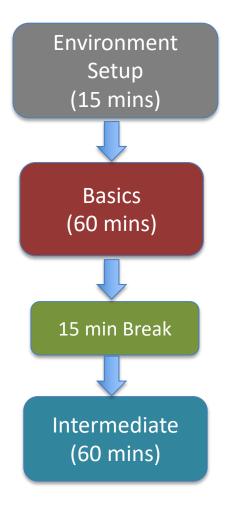
A comprehensive library for creating static, animated, and interactive visualizations in Python.





https://matplotlib.org/gallery/

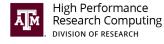
Cartopy adds understanding of map projections to matplotlib plots



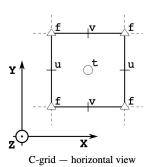
https://scitools.org.uk/cartopy/docs/latest/gallery/index.html

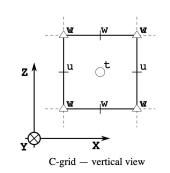
Short break! (15 minutes)

We will resume at 11:30 CDT



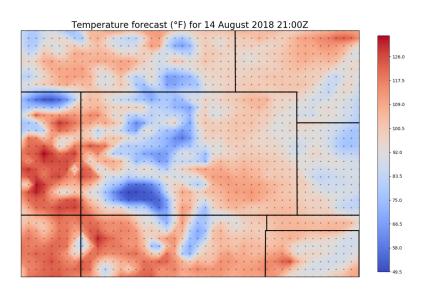
Course outline

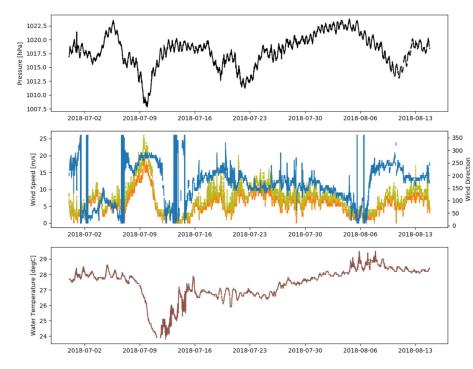

- Intro to the Pangeo stack
- xarray data structures
- Reading and writing netCDF files
- Plotting with matplotlib and cartopy


- Spatial operations in xgcm
- Vertical interpolation in xgcm
- ESMPy regridding/remapping
- Data access using Siphon

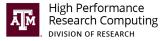
- xarray doesn't implicitly understand GCM grids
- xgcm wraps xarray to add an understanding of grid topology
- Implements spatial derivative operators
- Understands only C-grids for now, but other works are in progress
- Grid-aware vertical interpolation

position	-	-0-	+	-0-	-	- 0-	-	—
center		f[0]		f[1]				f[n-1]
left	f[0]		f[1]				f[n-1]	
right			f[0]		f[1]			f[n-1]
inner			f[0]				f[n-2]	
outer	f[0]		f[1]				f[n-1]	f[n]

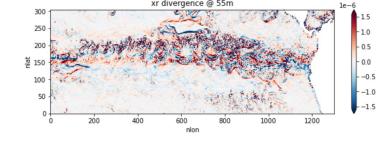

The different possible positions of a variable f along an axis.


https://xgcm.readthedocs.io/en/latest/grids.html

A collection of Python utilities for downloading data from remote data services



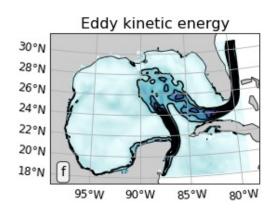
Some great Python modules to go along with xarray and dask!

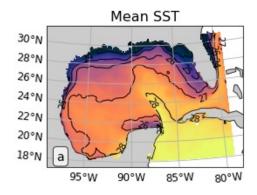

pop-tools

Tools to support analysis of POP2-CESM model solutions with xarray

Wraps xgcm to provide support for POP2 grids.

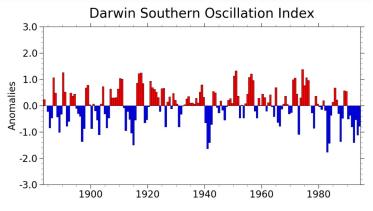
Inherits spatial derivative operators from xgcm

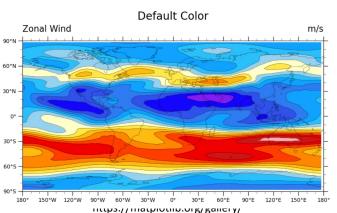


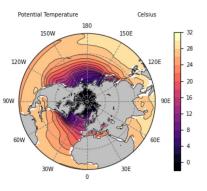

Support for POP2 region masks

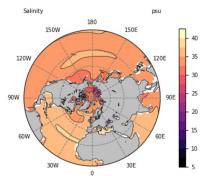
xroms

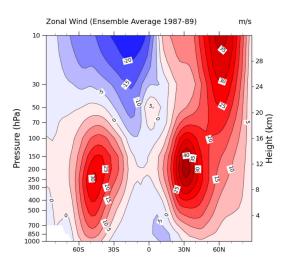
- Wraps xgcm to provide ROMS-specific grid manipulations and functions of interest to oceanographers.
- Developed by Kristen Thyng, Rob Hetland, et al. at TAMU
- Wraps cf-xarray to generalize coordinate and dimension calling.
- Wraps xcmocean to automatically choose colormaps for plotting!

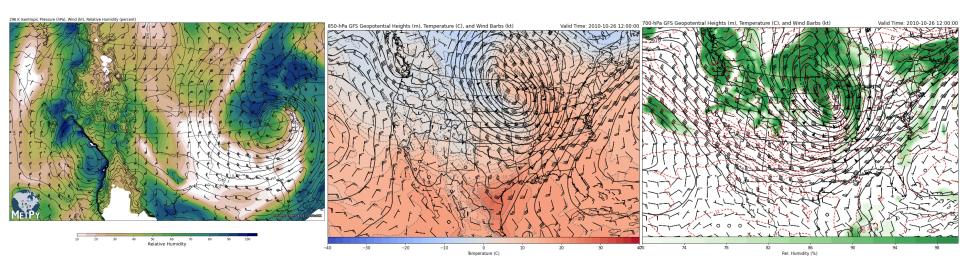



https://github.com/kthyng/xroms


GeoCAT


A collection of Python utilities related to NCL





https://geocat-examples.readthedocs.io/en/latest/gallery/index.html

A collection of Python tools for reading, visualizing, and performing calculations with weather data.

https://unidata.github.io/python-training/gallery/gallery-home/

Key Takeaways

- The Pangeo framework rethinks how we analyze large datasets
 - Resusable software design can help avoid re-writing analysis scripts that has already been developed by community
 - In its developmental stages, and will take a few more years to reach the depth/breadth of existing geoscience tools
 - For newer analysis tools development, consider using Pangeo
- NCO, CDO, Ferret, etc are still extremely handy for specific tasks

Additional Python resources

- Previously offered HPRC short courses
 - Introduction to Python
 - https://hprc.tamu.edu/training/intro python.html
 - Introduction to Scientific Python
 - https://hprc.tamu.edu/training/intro_scientific_python.html
 - Introduction to Python for MATLAB users
 - https://hprc.tamu.edu/training/python_matlab.html
- NumPy for MATLAB users (Quick reference)
 - http://mathesaurus.sourceforge.net/matlab-numpy.html

Additional resources

- Official Documentation
 - xarray docs
 - xgcm docs
- Ask for help:
 - Use the <u>python-xarray</u> on StackOverflow
 - GitHub Issues for bug reports and feature requests
 - Pangeo forums http://discourse.pangeo.io/

Questions?