

ACES Phase I Next Generation Composability

Aug 21, 2022

High Performance Research Computing

ACES - Accelerating Computing for Emerging Sciences (Phase I)

Component	Quantity	Description
<u>Graphcore IPU</u>	16	16 Colossus GC200 IPUs and dual AMD Rome CPU server on a 100 GbE RoCE fabric
Intel FPGA PAC D5005	2	FPGA SOC with Intel Stratix 10 SX FPGAs, 64 bit quad-core Arm Cortex-A53 processors, and 32GB DDR4
Intel Optane SSDs	8	3 TB of Intel Optane SSDs addressable as memory using MemVerge Memory Machine.

I Ligh Derformance Descarch Computing I have tamus adul NCE Avec

Available through <u>FASTER</u> (NSF Award #2019129)

ACES - Accelerating Computing for Emerging Sciences (Phase II)

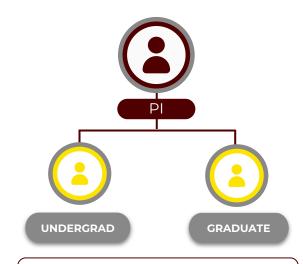
Component	Quantity*	Description
<u>Graphcore IPU</u>	32	16 Colossus GC200 IPUs, 16 Bow IPUs, and a dual AMD Rome CPU server on a 100 GbE RoCE fabric
Intel FPGA PAC D5005	2	FPGA SOC with Intel Stratix 10 SX FPGAs, 64 bit quad core Arm Cortex-A53 processors, and 32GB DDR4
Bittware IA-840F FPGA	2	Accelerator based on Intel Agilex FPGA
NextSilicon coprocessor	20	Reconfigurable accelerator with an optimizer continuously evaluating application behavior.
NEC Vector Engine	24	Vector computing card (8 cores and HBM2 memory)
Intel Ponte Vecchio GPU	100	Intel GPUs for HPC, DL Training, AI Inference
Intel Optane SSDs	48	18 TB of Intel Optane SSDs addressable as memory w/ MemVerge Memory Machine. *Estimated quantities

ACES

Accelerating Computing for Emerging Sciences

Our Mission:

- Offer an accelerator testbed for numerical simulations and AI/ML workloads
- Provide consulting, technical guidance, and training to researchers
- Collaborate on computational and data-enabled research.


Research Workflows - Accelerators (Phases I and II)

Hardware Profile	Applications Supported		
NEC Vector Engines	 AI/ML (Statistical Machine Learning, Data Frame) Chemistry (VASP, Quantum ESPRESSO) Earth Sciences NumPy Acceleration 	 Oil & Gas (Seismic Imaging, Reservoir Simulation) Plasma Simulation Weather/Climate Simulation 	
Graphcore IPUs	 Graph Data LSTM Neural Networks	Markov Chain Monte CarloNatural Language Processing (Deep Learning)	
Intel/Bittware FPGA	 Al Models for Embedded Use Cases Big Data CXL Memory Interface Deep Learning Inference Genomics 	 MD Codes Microcontroller Emulation for Autonomy Simulations Streaming Data Analysis 	
Intel Optane SSDs	BioinformaticsComputational Fluid Dynamics (OpenFOAM)	MD CodesRWRF	
NextSilicon	 Biosciences (BLAST) Computational Fluid Dynamics (OpenFOAM) Cosmology (HACC) Graph Search (Pathfinder) 	 Molecular Dynamics (NAMD, AMBER, LAMMPS) Quantum ChromoDynamics (MILC) Weather/Environment modeling (WRF) 	

Getting on ACES Phase I

- Allocation is upon special request during this phase of deployment.
- You must have an XSEDE account!
- Applications are available at <u>hprc.tamu.edu/aces/</u>
- Email us at help@hprc.tamu.edu for questions, comments, and concerns

PIs can apply for an account and sponsor accounts for their researchers.

hprc.tamu.edu

HPRC Helpdesk:

help@hprc.tamu.edu

Phone: 979-845-0219

