
Learning to Optimize in Swarms
Yue Cao 1, Tianlong Chen 2, Zhangyang Wang 2 and Yang Shen 1

1Department of Electrical and Computer Engineering, and 2Department of Computer Science and Engineering,
Texas A&M University, College Station, TX 77843, United States.

Abstract
•Learning to optimize has emerged as a powerful framework for various
optimization tasks.

•Current such “meta-optimizers” often learn from the space of continuous
optimization algorithms that are point-based and uncertainty-unaware.

•We learn in an extended space of both point-based and population-based
optimization algorithms.

•We incorporate the Boltzmann-shaped posterior into meta-loss to guide the
search in the algorithmic space and balance the exploitation-exploration trade-off.

•Empirical results over non-convex test functions and the protein docking
application demonstrate that this new meta-optimizer outperforms existing
competitors.

Methods

•Updating Rules: Iterative optimization algorithms, either point-based or
population-based, have a common generic expression of update formulas:

xt+1 = xt + δxt

The update is often a function g(·) of the historic sample values, objective values, and
gradients. For instance, in particle swarm optimization (PSO), we have

δxtj = g({xτj , f (xτj),∇f (xτj)}k,tj=1,τ=1)
= wδxt−1

j + r1(xtj − xt∗j ) + r2(xtj − xt∗)

In our approach, we parameterize the update rule g(·) through RNN, and introduce
intra- and inter-particle attention mechanisms:

gi(·) = RNNi(αinter
i ({αintra

j ({Sτj }tτ=1)}kj=1),ht−1
i )

•Population-based and Point-based Features: Inspired from both point- and
population-based algorithms, we choose the following four features for particle i at
iteration t:
• gradient: ∇f (xti)
•momentum: mt

i = ∑t
τ=1(1− β)βt−1∇f (xτi )

• velocity: vti = xti − xt∗i
• attraction:

∑
j(e−αd

2
ij(xti−xtj))

∑
j e
−αd2

ij
, for all j that f (xtj) < f (xti). α is the hyperparameter and dij = ||xti − xtj||2.

•Loss Function: In order to balance the exploration-exploitation tradeoff, we combine
the cumulative regret and the entropy of the posterior over the global optimum:

`f(φ) = T∑
t=1

k∑
j=1

f (xtj) + λh(p
x∗| T⋃

t=1
Dt)

 ,

where the posterior is a Boltzmann distribution [3]:
p

x∗| T⋃
t=1
Dt

 ∝ exp(−ρf̂ (x))

Test Function Results

LOIS outperforms DM_LSTM [1] and hand-engineered algorithms for non-convex Rast-
rigin functions:

f (x) = n∑
i=1
x2
i −

n∑
i=1
α cos (2πxi) + αn
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(b) 10D
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(c) 20D

Protein Docking Results

Ab initio protein docking represents a major challenge for optimizing a noisy and costly
function in a high-dimensional space [3]. We parameterize the search space as R12 as in
[3]. The final f (x) is fully differentiable and the search space is x ∈ R12.
LOIS outperforms PSO in energy scores for three protein-protein pairs of various difficulty
levels.
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(a) Easy: 1AY7
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(b) Medium: 2HRK
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(c) Difficult: 2C0L

Overall architectures and attention modules
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• Intra-particle attention:
btij = vTa tanh (Was

t
ij +Uah

t
ij), ptij = exp(btij)∑4

r=1 exp(btir)
, cti = ∑4

r=1 p
t
irs

t
ir

• Inter-particle attention: etj = γ ∑k
r=1m

t
rjq

t
rjc

t
r + ctj

Interpretation Results

•The trace only accounts for 66%-69% over iterations as shown in (b). This demonstrates
the importance of collaboration, a unique advantage of population-based algorithms.
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(a) Paths of first 80 samples of our
meta-optimizer, PSO and GD for the 2D
Rastrigin function.
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(b) The percentage of the trace of
γQt �M t + I (reflecting self-impact on
updates) over iteration t.

• In the first 6 iterations, the population-based features (3 & 4) contribute to the updates
the most. Point-based features (1 & 2) start to play an important role later:

Figure: Feature distribution over the first 20 iterations for our meta-optimizer.

Ablation Study

Dimension B0 B1 B2 B3 Proposed
10 55.4±13.5 48.4±10.5 40.1±9.4 20.4±6.6 12.3±5.4
20 140.4±10.2 137.4±12.7 108.4±13.4 48.5±7.1 43.0 ±9.2

Table: B0: the DM_LSTM baseline. B1: running DM_LSTM for k times and choosing the best solution .
B2: using k independent particles, each with the two point-based features and the intra-particle attention
module. B3: adding the two population-based features and the inter-particle attention module to B2.
Proposed: adding an entropy term in meta loss to B3.

Acknowledgement

This work is in part supported by the National Institutes of Health (R35GM124952 to YS). Part of the
computing time is provided by the Texas A&M High Performance Research Computing.

References

• [1] Marcin Andrychowicz et al. (2016). "Learning to learn by gradient descent by gradient descent." In
Advances in Neural Information Processing Systems, pages 3981–3989.

• [2] Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen. (2019). "Learning to Optimize in Swarms".
NeurIPS 2019

• [3] Yue Cao and Yang Shen. (2019). "Bayesian active learning for optimization and uncertainty
quantification in protein docking." arXiv preprint arXiv:1902.00067


