Learning to Optimize in Swarms

Yue Cao¹, Tianlong Chen², Zhangyang Wang² and Yang Shen¹

¹Department of Electrical and Computer Engineering, and ²Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, United States.

Abstract

• Learning to optimize has emerged as a powerful framework for various optimization tasks.

- Current such "meta-optimizers" often learn from the space of continuous optimization algorithms that are **point-based** and **uncertainty-unaware**.
- We learn in an extended space of **both** point-based and **population-based** optimization algorithms.
- We incorporate the **Boltzmann-shaped posterior** into meta-loss to guide the

Overall architectures and attention modules

search in the algorithmic space and balance the exploitation-exploration trade-off.

• Empirical results over non-convex test functions and the **protein docking** application demonstrate that this new meta-optimizer outperforms existing competitors.

Methods

• **Updating Rules:** Iterative optimization algorithms, either point-based or population-based, have a common generic expression of update formulas:

 $oldsymbol{x}^{t+1} = oldsymbol{x}^t + \delta oldsymbol{x}^t$

The update is often a function $g(\cdot)$ of the historic sample values, objective values, and gradients. For instance, in particle swarm optimization (PSO), we have

$$\begin{split} \delta \boldsymbol{x}_{j}^{t} &= g(\{\boldsymbol{x}_{j}^{\tau}, f(\boldsymbol{x}_{j}^{\tau}), \nabla f(\boldsymbol{x}_{j}^{\tau})\}_{j=1,\tau=1}^{k,t}) \\ &= w \delta \boldsymbol{x}_{j}^{t-1} + r_{1}(\boldsymbol{x}_{j}^{t} - \boldsymbol{x}_{j}^{t*}) + r_{2}(\boldsymbol{x}_{j}^{t} - \boldsymbol{x}^{t*}) \end{split}$$

In our approach, we parameterize the update rule $g(\cdot)$ through RNN, and introduce intra- and inter-particle attention mechanisms:

 $g_i(\cdot) = \operatorname{RNN}_i(\alpha_i^{\operatorname{inter}}(\{\alpha_j^{\operatorname{intra}}(\{\boldsymbol{S}_j^{\tau}\}_{\tau=1}^t)\}_{j=1}^k), \boldsymbol{h}_i^{t-1})$

• **Population-based and Point-based Features:** Inspired from both point- and population-based algorithms, we choose the following four features for particle *i* at

• Intra-particle attention: $b_{ij}^t = \boldsymbol{v}_a^T \tanh(\boldsymbol{W}_a \boldsymbol{s}_{ij}^t + \boldsymbol{U}_a \boldsymbol{h}_{ij}^t), \quad p_{ij}^t = \frac{\exp(b_{ij}^t)}{\sum_{r=1}^4 \exp(b_{ir}^t)}, \quad \boldsymbol{c}_i^t = \sum_{r=1}^4 p_{ir}^t \boldsymbol{s}_{ir}^t$ • Inter-particle attention: $\boldsymbol{e}_j^t = \gamma \sum_{r=1}^k m_{rj}^t q_{rj}^t \boldsymbol{c}_r^t + \boldsymbol{c}_j^t$

Interpretation Results

• The trace only accounts for 66%-69% over iterations as shown in (b). This demonstrates the importance of collaboration, a unique advantage of population-based algorithms.

iteration t: • gradient: $\nabla f(\boldsymbol{x}_i^t)$ • momentum: $\boldsymbol{m}_i^t = \boldsymbol{\Sigma}_{\tau=1}^t (1-\beta)\beta^{t-1}\nabla f(\boldsymbol{x}_i^{\tau})$ • velocity: $\boldsymbol{v}_i^t = \boldsymbol{x}_i^t - \boldsymbol{x}_i^{t*}$ • attraction: $\frac{\boldsymbol{\Sigma}_j(e^{-\alpha d_{ij}^2}(\boldsymbol{x}_i^t - \boldsymbol{x}_j^t))}{\boldsymbol{\Sigma}_j e^{-\alpha d_{ij}^2}}$, for all j that $f(\boldsymbol{x}_j^t) < f(\boldsymbol{x}_i^t)$. α is the hyperparameter and $d_{ij} = ||\boldsymbol{x}_i^t - \boldsymbol{x}_j^t||_2$.

• Loss Function: In order to balance the exploration-exploitation tradeoff, we combine the cumulative regret and the entropy of the posterior over the global optimum:

 $\ell_f(\boldsymbol{\phi}) = \sum_{t=1}^{T} \sum_{j=1}^{k} f(\boldsymbol{x}_j^t) + \lambda h(p\left(\boldsymbol{x}^* \mid \bigcup_{t=1}^{T} D_t\right)),$

where the posterior is a **Boltzmann distribution** [3]:

 $p\left(\boldsymbol{x}^* \mid {T \atop t=1} D_t\right) \propto \exp(-\rho \hat{f}(\boldsymbol{x}))$

Test Function Results

LOIS outperforms DM_LSTM [1] and hand-engineered algorithms for non-convex Rastrigin functions:

 $f(\boldsymbol{x}) = \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} \alpha \cos\left(2\pi x_i\right) + \alpha n$

(a) Paths of first 80 samples of ourmeta-optimizer, PSO and GD for the 2DRastrigin function.

(b) The percentage of the trace of $\gamma Q^t \odot M^t + I$ (reflecting self-impact on updates) over iteration t.

• In the first 6 iterations, the population-based features (3 & 4) contribute to the updates the most. Point-based features (1 & 2) start to play an important role later:

Figure: Feature distribution over the first 20 iterations for our meta-optimizer.

Ablation Study

Dime	ension	\mathbf{B}_0	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	Proposed
]	_0	55.4 ± 13.5	48.4 ± 10.5	40.1 ± 9.4	20.4 ± 6.6	12.3 ± 5.4
	20	140.4 ± 10.2	137.4 ± 12.7	108.4 ± 13.4	48.5 ± 7.1	43.0 ± 9.2

Table: **B**₀: the DM_LSTM baseline. **B**₁: running DM_LSTM for k times and choosing the best solution . **B**₂: using k independent particles, each with the two point-based features and the intra-particle attention module. **B**₃: adding the two population-based features and the inter-particle attention module to **B**₂. **Proposed**: adding an entropy term in meta loss to **B**₃.

Protein Docking Results

Ab initio protein docking represents a major challenge for optimizing a noisy and costly function in a high-dimensional space [3]. We parameterize the search space as \mathbb{R}^{12} as in [3]. The final $f(\boldsymbol{x})$ is fully differentiable and the search space is $\boldsymbol{x} \in \mathbb{R}^{12}$.

LOIS outperforms PSO in energy scores for three protein-protein pairs of various difficulty levels.

Acknowledgement

This work is in part supported by the National Institutes of Health (R35GM124952 to YS). Part of the computing time is provided by the Texas A&M High Performance Research Computing.

References

- [1] Marcin Andrychowicz et al. (2016). "Learning to learn by gradient descent by gradient descent." In Advances in Neural Information Processing Systems, pages 3981–3989.
- [2] Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen. (2019). "Learning to Optimize in Swarms". NeurIPS 2019
- [3] Yue Cao and Yang Shen. (2019). "Bayesian active learning for optimization and uncertainty quantification in protein docking." arXiv preprint arXiv:1902.00067