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Design Goals

• ePolyScat.D, a legacy serial code
– Many separate executables
– Coarse grained parallelization using shell scripts
– Low memory usage

• Heavy use of scratch disk files
• Communication between executables through disk

– Static array allocation
• ePolyScat.E, distributed-memory parallel (N ≤ 64)

– One executable
– Limited disk I/O using only the master node
– Dynamic array allocation
– All intermediate data held in core
– Fortran 90, MPI message passing
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Basic Equations

The three dimensional Schrodinger equation for an
electron interacting with a molecule

Hψ r,θ,φ( ) = Eψ r,θ,φ( )

Use expansion in the angular coordinates

ψ r,θ,φ( ) = 1
r
flm r( )Xlm θ,φ( )
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Differential equation for radial functions
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Distribute Grid on Processors

 flm r( )⇒ flmk = flm rk( ) k = 1,K ,M

 1,K ,M1[ ] M1 +1,K M 2[ ] L MN −1 +1,K MN[ ]

The problem is solved on a grid

Each of the N processor then has part of the grid

• The grid has different step sizes in different regions
of the molecule

• Different values of lmax are used in different regions
• Different numbers of points are allocated to each

processors
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Exchange Integrals

The exchange integral contains a term from the
Coulomb potential of the form

Il r( ) =
1
rl+1

′r( )l g ′r( )d ′r
0
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Partial integrations are done independently on each
processor and the sums are obtained in VDiff using
MPI_SCAN

I k = P j

j=1

k

∑
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Solution of the Inhomogeneous Diff Eq

 fN = TNTN −1L T2T1f0

• The solution of the differential equation can also be
written as a series of matrix multiplications

where each Tk matrix resides on a different
processor.

• Unfortunately, in order to obtain numerical stability,
the computation of Tk depends in part on the value of
the vector obtained on the k-1 processor.

• Current code in GHomo uses a pipeline for
parallelization.
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Test Runs on Hydra

• Tests using 8, 16, 32, and 64 processors with 8
processors per node

• Elapsed time ranged from 3 hours for 8 processors to
1 hour with 64

• Production runs typically use 32 processors
• Test jobs compute the photoionization of BF3 in an

asymmetric planar geometry
F
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Radial Grid Density
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Partial Wave Expansion
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Memory Usage
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Distribution of Time in ePolyScat
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Speedup in ePolyScat
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Distribution of Time in Scat
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Speedup in Scat
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Photoionization of C6F6 Leading to the
C 2B2u State of C6F6
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Response to the Two Symmetric Modes
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C6F6 Vibrational Branching Ratios
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Conclusions

• Parallelization has been achieved using up to 32 processors
• The combination of a parallel code and a significant

computational resource, i.e. hydra, has allowed us to consider
much larger systems

• To go beyond 32 processors
– Additional work on the bottleneck, GHomo
– Consider larger systems

• systems with no symmetry
• electron correlation, i. e. multichannel

– Additional coarse grained parallelization, e. g. more that one
scattering energy at one time

• http://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html


