Hurricane Surge Response Functions

Jen Irish

Graduate Students: Katy Song, Rajat Katyal, Ikpoto Udoh Collaborators: Don Resio, Mary Cialone

> Annual Users Meeting May 6, 2009

> > Sponsored by the U.S. Army Corps of Engineers the Texas General Land Office & the Texas Department of Transportation

Surge Response Functions Outline

- Motivation
- Background
- Methodology
- Surge Characteristics
- Parameterization
- Results
- Ongoing Research
- Hurricane Ike Verification
- Summary

Surge Response Functions Motivation

- 1. An <u>improved</u>, <u>efficient</u>, and <u>accurate</u> risk-assessment method for coastal flooding is required.
- 2. Develop a continuous surge estimator for emergency response

Surge Response Functions Background – Surge Generation

Primary mechanisms:

• Wind setup:

• Low pressure: barometric pressure

• Wave setup:

Surge Response Functions Background – Surge Generation

Surge Response Functions Background – Historical Approach

- Form data set of "largest" storms (measurements or hindcasts)
- Typical applications:
 - Points over Threshold (POT)
 - Annual series
- PARAMETRIC (GEV, Weibull, Log Normal or other assumed form):
 - Considers sampling size effects on "fitted" curve
 - Uses various fitting methods (MLM, MOM, etc.)
 - Allows parametric estimation of return periods larger than given by the historical record
- NON-PARAMETRIC (e.g., EST):
 - No assumptions on data's probability distribution in interior
 - Uses data to develop distribution in interior
 - Still extrapolates beyond data range using parametric "fit" to data
- Results extremely sensitive to record length
- Storms assumed to be from a homogeneous parent population
 - Climate variability typically excluded

Surge Response Functions Methodology – Response Function Approach

General form for surge response at location x and time t:

 $\zeta(x,t) = \Phi(\underline{G}, \underline{W} \mid c_p, R_{\max}, v_f, \theta, S(t), t)$

where

 $\zeta(x,t)$ is the storm surge at location x and time t,

 Φ is a numerical model used to generate surges over a grid,

 \underline{G} is a time invariant grid of bathymetry/topography,

 \underline{W} is a wind field over the grid at time t,

 c_p is the central pressure,

 $R_{\rm max}$ is the radius to maximum wind speed from the center of the storm,

 v_f is the forward velocity of the storm,

 $\boldsymbol{\theta}$ is the geographic angle of the track, and

S(t) is the position of the storm along the track at time t,

Surge Response Functions Methodology – Response Function Approach

Joint probability matrix:

$$p(c_p, R_p, v_f, \theta_l, x) = \Lambda_1 \cdot \Lambda_2 \cdot \Lambda_3 \cdot \Lambda_4 \cdot \Lambda_5$$

$$\Lambda_{1} = p(c_{p} \mid x) = \frac{\partial F[a_{0}(x), a_{1}(x)]}{\partial (\Delta p \mid c_{p})} = \frac{\partial}{\partial x} \left\{ \exp\left\{-\exp\left[\frac{\Delta p - a_{0}(x)}{a_{1}(x)}\right]\right\} \right\}$$
(Gumbel Distribution)
$$\Lambda_{2} = p(R_{p} \mid c_{p}) = \frac{1}{\sigma(\Delta P)\sqrt{2\pi}} e^{-\frac{(\bar{R}_{p}(\Delta P) - R_{p})^{2}}{2\sigma^{2}(\Delta P)}}$$

$$\Lambda_3 = p(v_f \mid \theta_l) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(\bar{v}_f(\theta_l) - v_f)^2}{2\sigma^2}}$$

$$\Lambda_4 = p(\theta_l \mid x) = \frac{1}{\sigma(x)\sqrt{2\pi}} e^{-\frac{(\bar{\theta}_l(x) - \theta_l)^2}{2\sigma^2(x)}}$$

 $\Lambda_5 = \Phi(x)$

Uncertainty:
$$\sigma_{total}^2 = \sigma_{tide}^2 + \sigma_{model}^2 + \sigma_B^2 + \sigma_{waves}^2 + \sigma_{winds}^2 + \sigma_{residual}^2$$

Surge Response Functions Methodology – Numerical Simulation

Storm surge - ADCIRC (Luettich et al. 1992)

• Hydrodynamic model:

$$\frac{\partial \vec{U}}{\partial t} + \left(\vec{U} \cdot \nabla_{H}\right)\vec{U} = -g\nabla_{H}\left(\varsigma + \frac{p}{g\rho_{w}} - \alpha\eta\right) + f\vec{k} \times \vec{U} + \frac{\vec{\tau}_{s}}{H\rho_{w}} - \frac{\vec{\tau}_{b}}{H\rho_{w}}$$
$$\frac{\partial H}{\partial t} + \nabla_{H}\left(\vec{U}H\right) = 0$$

- Finite element, variable resolution
- Model forcing:
 - Wind stress
 - Barometric pressure

Surge Response Functions Methodology – Numerical Simulation

- Planetary Boundary Layer Model (Thompson & Cardone 1996):
 - Input V_{f} , θ , cp, R_{ρ} , track position, ...
 - 75 storms on 4 tracks (V_f constant, θ ~ constant)

Surge Response Functions Surge Characteristics – Alongshore Variation

Track A

Track D

Surge Response Functions Surge Characteristics – Response Surfaces

Location 3

Surge Response Functions Parameterization

Surge Response Functions Parameterization – Response Function

Surge Response Functions Parameterization – Response Function

Surge Response Functions Results – All Four Tracks at 30 km Spacing

Surge Response Functions Results – Two Tracks at 60 km Spacing

Surge Response Functions Results – Two Tracks at 90 km Spacing

Surge Response Functions Results – Two Tracks at 90 km Spacing, Limited Storms

Surge Response Functions Ongoing Research – Continental Shelf Width (Preliminary)

Surge Response Functions Ongoing Research – Surge and Storm Size (Preliminary)

$$\zeta_2' = \frac{\gamma \zeta}{\Delta p} + m_x \Delta p + S_R R_p$$

Surge Response Functions Hurricane Ike – Preliminary Results

Maximum Surge Calculation near Rollover Pass

Rmax[km]	Peak [km]	
10	10.78	
14	12.48	
18	13.32	
22	13.88	
26	14.29	
30	13.76	
34	13.30	
38	12.94	
42	12.65	
46	12.41	
50	12.21	
54	12.04	

TEXAS A&M★ENGINE

- Hurricane Ike characteristics: $c_p=952 \text{ mb}$, $R_{max} = 38 \text{ km}$
- Location 28 km to the right of the landfall
- Water level elevation by tides and wave setup not included
- Impact of barrier island morphology not considered

FEMA HWM = 14.70 ft, MSL ("wave runup")

Surge Response Functions Hurricane Ike – Preliminary Results

Comparison to USGS water level gauge data

- · Water level elevation by tides and wave setup not included
- Impact of barrier island morphology not considered

ADCIRC Job Characterization on HYDRA

Each ADCIRC simulation ~ 1400 computational hours (32/64 processors) Each coupled ADCIRC/wave simulation ~ 3500 computational hours (32/64 processors)

Advantages of using Hydra:

- Capable of running nine parallel simulations simultaneously
- Linkage to large data storage via K2 server

Hydra Usage Information for FY09:

• 296 jobs, 146267 cpu hours

Job Type	Total Jobs	Total Cpu Hours	Average Execution Time
1-cpu	153	65	25 minutes
32-cpu	82	76421	32 hours
64-cpu	60	68555	24 hours
128-cpu	1	1224	18 hours

Surge Response Functions Summary

- Surge response approach presents solution to extreme-value statistics for coastal flooding
- Definable characteristics of response surfaces given a single track:
 - Surge distribution scales with Rp and cp
- Overall methodology must include a means to reflect uncertainty in predicted response surfaces
- Response surface prediction has potential to extend applicability of limited observation set (i.e. surges in stronger and weaker storms can be estimated)
- Response surface prediction reduces numerical simulation requirements by allowing functional interpolation between simulation results
- Application in coast bays viable