COMPUTATIONAL MECHANICS: A POWERFUL SCIENTIFIC METHODOLOGY

J. N. Reddy

Advanced Computational Mechanics Laboratory Department of Mechanical Engineering Texas A&M University College Station, Texas 77843-3123 jnreddy@tamu.edu

Talk presented atSuper Computer Annual User Meeting - 6 May 200920th Anniversary Celebration

GENERAL REMARKS

One of the most important things engineers and scientists do is to *model* physical phenomena

(1) Conduct physical experiments

(2) Develop mathematical models

(3) Numerically simulate them

(4) Design systems

(5) Manufacture systems

CURRENT DEVELOPMENTS

Numerical simulations of new systems
 Enhancement/refinement of existing element technologies
 Development of novel computational frameworks

Multiscale modeling of complex biological cells and tissues

Overall Objective

Aorta (arch)

Pulmonary

ft atrium

Vitral valve

Aortic valve

Left ventricle

Mechanics of Organs

> Apply knowledge for the development of new diagnostic & treatment tools and prosthetics

Temporal Scale

Mechanics of Tissues

Pulmonary valve

Pulmonary

Right atrium

Tricuspid valve

Right ventricle

veins

Nano-Micro Scale

Mechanics of Cell

Micro-Meso Scale

Meso-Macro Scale

Spatial Scale

JN Reddy

eatment **Cancer cell** Cardiovascular Diseases nd ສ agnosis

Breast Tumor

Skin graft Vascular tissue

Biological cells: – 4

Nonlinear Shell Theory

The displacement field:

$$\mathbf{v}(\theta^{i}) = \mathbf{u}(\theta^{\alpha}) + \theta^{3} \mathbf{\phi}(\theta^{\alpha}) + (\theta^{3})^{2} \underline{\Psi}(\theta^{\alpha})$$

Seven kinematic variables $(\boldsymbol{u}, \boldsymbol{\varphi}, \boldsymbol{\psi}_{2})$

- Refined shell theory that accounts for transverse shear deformation and thickness change is developed
- Use a hyperelastic constitutive model, and assume linear relation between S and E.

Composite hyperboloidal composite shell

JN Reddy

Hyperboloid

Desirable Features of a Computational Approach

- Must preserve all features of the mathematical model in the formulation and associated computational model.
- Must be based on a formulation that seeks to minimize (in some meaningful sense) the error introduced in the governing equations.
- Avoid ad-hoc approaches to `fix' numerical deficiencies of the computational model.

Currently Used Computational Schemes

- FEM in structural mechanics is based on minimum (energy) principles.
- FEM in fluid mechanics is based on weak forms (integral statements) of governing equations, and they are not equivalent to any minimum principle.
- FDM has no minimum principle in any field; they are based on truncated Taylor's series expansions of the derivatives in governing differential equations.

<u>LEAST-SQUARES FINITE ELEMENT</u> <u>MODELS – BASIC IDEA</u>

$$-\nabla^{2} u = f \text{ in } \Omega$$

$$(-\nabla^{2} = -\nabla \cdot \nabla)$$

$$u = \hat{u} \text{ on } \Gamma_{u}$$

$$\frac{\partial u}{\partial n} = \hat{g} \text{ on } \Gamma_{g}$$

$$\mathbf{v} - \nabla u = 0 \text{ in } \Omega$$

$$-\nabla \cdot \mathbf{v} = f \text{ in } \Omega$$

$$u = \hat{u} \text{ on } \Gamma_{u}$$

$$\hat{\mathbf{n}} \cdot \mathbf{v} = \hat{g} \text{ on } \Gamma_{g}$$

$$\begin{split} \mathbf{I}_{\mathbf{m}}(u, \mathbf{v}) = & || \mathbf{v} - \nabla u ||_{0,\Omega}^{2} + || -\nabla \cdot \mathbf{v} - f ||_{0,\Omega}^{2} + || \hat{\mathbf{n}} \cdot \mathbf{v} - \hat{g} ||_{0,\Gamma_{g}}^{2} \\ \mathbf{Minimize} \quad \mathbf{I}_{\mathbf{m}}: \quad \delta \mathbf{I}_{\mathbf{m}} = 0 \quad \text{gives} \\ \mathbf{B}_{\mathbf{m}}((u, \mathbf{v}), (\delta u, \delta \mathbf{v})) = l_{\mathbf{m}}((\delta u, \delta \mathbf{v})) \end{split}$$

Example (using LSFEM Model 2):

Differential Equation $-\nabla^{2} u = f \text{ in } -1 \le x, y \le 1$ Boundary Conditions $\frac{\partial u}{\partial y} \equiv v = 0 \text{ on } y = \pm 1$ $\frac{\partial u}{\partial x} \equiv w = q^{*}(y) = 0 \text{ on } x = -1$ $u = u^{*}(y) = 8\cos \pi y \text{ on } x = 1$

Analytical solution:

$$u(x, y) = (7x + x^7) \cos \pi y$$

Plots of the L_2 -Error norms as a function of p

Velocity-pressure-vorticity Formulation

$$(\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \frac{1}{\text{Re}} \nabla \times \boldsymbol{\omega} = \mathbf{f} \text{ in } \Omega$$
$$\boldsymbol{\omega} - \nabla \times \mathbf{u} = \mathbf{0} \text{ in } \Omega$$
$$\nabla \cdot \mathbf{u} = 0 \text{ in } \Omega$$
$$\nabla \cdot \boldsymbol{\omega} = 0 \text{ in } \Omega$$
$$\mathbf{u} = \hat{\mathbf{u}} \text{ on } \Gamma_{\mathbf{u}}$$
$$\boldsymbol{\omega} = \hat{\boldsymbol{\omega}} \text{ on } \Gamma_{\boldsymbol{\omega}}$$

$$\mathcal{J}(\mathbf{u}, p, \omega; \mathbf{f}) = \frac{1}{2} \left(\left\| (\mathbf{u} \cdot \nabla) \,\mathbf{u} + \nabla p + \frac{1}{\mathrm{Re}} \,\nabla \times \omega - \mathbf{f} \right\|_{0}^{2} + \left\| \,\omega - \nabla \times \mathbf{u} \,\right\|_{0}^{2} + \left\| \,\nabla \cdot \mathbf{u} \,\right\|_{0}^{2} + \left\| \,\nabla \cdot \mathbf{u} \,\right\|_{0}^{2} \right)$$

$$(27)_{\overline{\mathbf{I}} - 12}$$

JN R

Oscillatory Flow of a Viscous Incompressible Fluid in a Lid-driven Cavity

FluidMech LSFEM - 13

Flow of a Viscous Incompressible Fluid past a Cylinder

Circular Cylinder in Crossflow

Vorticity Contours

Non-stationary incompressible N-S equations, Re = 100 Least-Squares time / space decoupled formulation 1200 elements with p = 2

J.P. Pontaza TAMU

M - 14

FluidMech LSFEM - 15

CHALLENGES & OPPORTUINITIES

- Material modeling at different scales presents new challenges in developing more sophisticated and accurate computational techniques.
- Constitutive models of new and multifunctional materials (nano-composites; biological materials; micromechanics and mesomechanics studies)
- Novel computational procedures for multiphysics and multi-scale modeling

Acknowledgements to my students

Biological cells and soft tissues Least-squares

Closure - 17

I thank you (attendees) for your interest in my lecture

I thank Greta Thomas, and Richard (Lee) Panetta for their help and support with the super computer accounts for me and my students

That which is not given is lost