Using computers to go where fluid dynamics experiments cannot

Fluids, Turbulence and Fundamental Transport Lab Mechanical Engineering, Texas A&M

May 6, 2010

· Heat transfer analysis in internal turbine cooling

Passive scalar separation using chaotic advection

Figure: http://www.milnet.com/jeteng.htm

Figure: Brayton cycle http://grc.nasa.gov

Efficiency as a function of temperature ratio: $\eta_{cycle} = 1 - \frac{T_5}{T_4}$ Increase T_4 , Limits: Metal melting temperature and part life

Figure: Turbine blade leading edge region, Right: from Langston (1980)

Figure: PDF measurements from Radomsky et al. (2000)

The large scales are solved on the grid while subgrid scales are modelled.

$$\nabla \cdot \mathbf{U} = 0, \tag{1}$$

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla \mathbf{U} = -\rho^{-1} \nabla P + \nabla \cdot \left(\left[\nu + \nu_t \right] \nabla \mathbf{U} \right),$$
 (2)

$$\partial_t T + \mathbf{U} \cdot \nabla T = \nabla \cdot \left(\left[\alpha + \alpha_t \right] \nabla T \right),$$
 (3)

- Initial estimates based on a steady RANS computation (Knost et al. 2009) at $Re_{Chord} \approx 150,000$:
 - 10^8 cells (for $x^+ \approx y^+ \approx z^+ \approx 50$)
 - 10^6 time steps per flow through (based on CFL)

· Highly scalable, open-source Spectral Element code

• 2D-periodic, divergence free solution of Navier-Stokes (Taylor vortices)

- Increased grid density near wall
- Length scale by grid spacing
- · Freestream intensity by inflow vortex strength
- Boundary layer by slope and length of converging section

- Exponential stretching of interface across which diffusion occurs
- · Can be generated from simple flow fields.

Source: Scientific American, January 1989

Source: P. Welander,"Studies of the general development of motion in a twodimensional, ideal fluid," Tellus 7, 141 1955.

Stirring in a braiding motion with physical rods

P. L. Boyland, H. Aref, and M. A. Stremler, "Topological fluid mechanics of stirring," J. Fluid Mech., 2000

A. Duggleby M. Schwänen P. Rao

Physical rods replaced by periodic orbits

[&]quot;Stirring with ghost rods in a lid-driven cavity," by Pankaj Kumar, Jie Chen, and Mark Stremler.

The Chebychev-Fourier Method was used to solve Final a Vorticity-Stream Function formulation

Mixing Index for Passive Scalar Transport

Stirring Index for Different Re Based on the Box F

21/25

Comparison of Dispersion of Particles between Re = 0.1 and Re = 10

Separation of Substances with Close Diffusivities [\mathbf{F}] (Re=0.01, Sc= $\frac{\nu}{D} = 10^6$, $\chi = \frac{D_1 - D_2}{D} = 0.05$)

0.5

-10

-5

0

(d) Contours of $\theta_1 - \theta_2$

5

x 10⁻³

x/h

Contours of θ_1 after unbraiding

0.3

0.2

0.1

(C)

Using computers to go where fluid dynamics experiments cannot

Texas A&M Supercomputing Center has played an important role in this work.