Using computers to go where fluid dynamics experiments cannot

Fluids, Turbulence and Fundamental Transport Lab Mechanical Engineering, Texas A\&M

May 6, 2010

Outline

- Heat transfer analysis in internal turbine cooling

- Passive scalar separation using chaotic advection

AM Motivation - From Flying and Thermo

Figure: http://www.milnet.com/jeteng.htm

A Motivation - From Flying and Thermo

Figure: Brayton cycle http://grc.nasa.gov
Efficiency as a function of temperature ratio: $\eta_{\text {cycle }}=1-\frac{T_{5}}{T_{4}}$ Increase T_{4}, Limits: Metal melting temperature and part life

AIM
 Transient hot spots can cause part failure

Figure: Turbine blade leading edge region, Right: from Langston (1980)

\sin
 Stagnation region horseshoe vortex is unsteady

Figure: PDF measurements from Radomsky et al. (2000)

A highly resolved LES simulation is proposed

The large scales are solved on the grid while subgrid scales are modelled.

$$
\begin{align*}
\nabla \cdot \mathbf{U} & =0, \tag{1}\\
\partial_{t} \mathbf{U}+\mathbf{U} \cdot \nabla \mathbf{U} & =-\rho^{-1} \nabla P+\nabla \cdot\left(\left[\nu+\nu_{t}\right] \nabla \mathbf{U}\right), \tag{2}\\
\partial_{t} T+\mathbf{U} \cdot \nabla T & =\nabla \cdot\left(\left[\alpha+\alpha_{t}\right] \nabla T\right), \tag{3}
\end{align*}
$$

- Initial estimates based on a steady RANS computation (Knost et al. 2009) at $R e_{C h o r d} \approx 150,000$:
- 10^{8} cells (for $x^{+} \approx y^{+} \approx z^{+} \approx 50$)
- 10^{6} time steps per flow through (based on CFL)
- Highly scalable, open-source Spectral Element code

$E=3, N=4$
Fischer et al. 2007

- Strong scaling for 7.8 mio grid points

$\widehat{A} \mid \vec{M}$ Inflow boundary

- 2D-periodic, divergence free solution of Navier-Stokes (Taylor vortices)

Ell
 Side domain view

> 弗
> 长

css：

．．．．．．．：．．．．．．．．：：．．．．．．．．．

－Increased grid density near wall
－Length scale by grid spacing
－Freestream intensity by inflow vortex strength
－Boundary layer by slope and length of converging section

A Preliminary results

A. Duggleby M. Schwänen P. Rao

$\overrightarrow{\mathbf{A}}$ Preliminary results

A. Duggleby M. Schwänen P. Rao

May 6, 2010

A Preliminary results

$\overline{A N}$
 Efficient Mixing in Laminar Flows Through Chaotic Particle Trajectories

- Exponential stretching of interface across which diffusion occurs
- Can be generated from simple flow fields.

$E \pi$
 Braiding with "Ghost-Rods"

Stirring in a braiding motion with physical rods

P. L. Boyland, H. Aref, and M. A. Stremler, "Topological fluid mechanics of stirring," J. Fluid Mech., 2000

Physical rods replaced by periodic orbits

$$
u=\frac{\partial w}{\partial y}= \pm \sum_{n=1}^{N} U_{n} \sin (n x / 2)
$$

$$
u=\stackrel{\partial \psi}{\partial y}=\mp \sum_{n=1}^{N} U_{n} \sin (n x / 2)
$$

"Stirring with ghost rods in a lid-driven cavity," by Pankaj Kumar, Jie Chen, and Mark Stremler.

May 6, 2010

A

The Chebychev-Fourier Method was used to solve $\left[F T^{2}\right.$?
a Vorticity-Stream Function formulation a Vorticity-Stream Function formulation
source: Roger Peyret, Spectral Methods for Incompressible Viscous Flow, 2002

Contours of Stream Function

A Contour Plots of Stream Function

(b) $R e=1$

(c) $\mathrm{Re}=10$

(d) $\mathrm{Re}=100$

A Mixing Index for Passive Scalar Transport

A Mixing Index for Passive Scalar Transport

ReSc $=10,000$
Mixing Index:

$$
M=\frac{1}{N} \sum_{i=1}^{N} \frac{\theta_{0}-\left|\theta_{i}-\theta_{0}\right|}{\theta_{0}}
$$

$\operatorname{Re}=1, t=1.00[s]$

$\begin{array}{lllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5\end{array}$

A Dispersion of Particles

A \mathbb{M} Stirring Index for Different Re Based on the Box [$\left.F]^{1}\right]^{2}$ Counting Method

(a) Stirring Index 1

(b) Stirring Index 2

Stirring Index: $\epsilon=\frac{1}{K} \sum_{i=1}^{K} \omega_{i}$

$$
\omega_{i}= \begin{cases}\frac{n_{i}}{n_{\max }} & , \quad n_{i}<n_{\max } \\ 1 & , \quad n_{i} \geq n_{\max }\end{cases}
$$

Comparison of Dispersion of Particles between $\operatorname{Re}=0.1$ and $\operatorname{Re}=10$

(a) $\mathrm{Re}=0.1,8$ Advection Cycles
(c) $\mathrm{Re}=0.1,18$ Advection Cycles

(a) Contours of θ_{1}

(C) Contours of θ_{1} after unbraiding

(b) Contours of θ_{2}

(d) Contours of $\theta_{1}-\theta_{2}$

Aln
 Chaotic Separation vs. diffusion

$A \mathbb{A}$ Using computers to go where fluid dynamics $\left[F \lambda^{2}\right.$

Texas A\&M Supercomputing Center has played an important role in this work.

