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Forecast of Energy Consumption up to ~ 2050
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Technology Evolution and Energy Storage Needs

» steam engine (1) industrialization

« electricity and mass production (2"9)

« computers (3') processing and sharing information
« automation (4)

innovations
ﬁ HEN for autonomous
@ o o o o .
QQ H vehicles,
Internet of Things,

robotics,
drones...




Renewable Energies Need Batteries

Vistra Energy
(California)

has the largest

battery storage
system since Jan 2021
300MW/1,200 MWh
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Southern Australia’s Hornsdale Power Reserve 150MW/194MWh
(https://www.bbc.com/future/article/20201217-renewable-power-the-worlds-largest-battery )
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Energy storage: # of devices; battery size
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Energy stored during charge and released to an external load
during discharge in a typical Li-ion battery
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Current Status of Commercial Batteries: Materials Issues

» Shortage of metals (Li, Co, Ni, and others)

* Available low cost, abundant, non-toxic materials
(Na, Mg, Ca, Al) = significant new challenges

* Electrolytes: cost, effectiveness (design)



Other Significant Challenges

* Interfacial behavior
» Degradation, cycling, lifetimes

 Fast charge Intrinsically

» Cost out of equilibrium system
« Safety requires “holistic” approaches,
» Mechanical stability instead of “patching solutions”

* Recycling materials
» Operation under wide range of temperatures

 Lack of understanding of interactions among battery components
(anode, cathode, electrolyte)

» Effects of micro or nanostructure in anodes, cathodes, interfaces,
iInterphases



Main Fields where Battery Research is taking Huge Steps

 surface and interfacial characterization, in situ, operando modes
* first-principles computations, multiscale methodologies

 multimodal characterization (integrating theory and
experiments)

» data science approaches



@ iEIectrolyte Decomposition under Electron-Rich Environmentsiim’I .
[ Pure DME ] [Thermodynamics and Kinetics]
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Alm | Li-metal/Electrolyte: Effect of External Electrons

Effect of excess electrons at the Li/Electrolyte Interface: - c@machoand . B. Balbuena, JPS 2020

General Highlights

+ Salt decomposition occurs w/ and w/o Q.. However, the extent of
decomposition is higher when an excess of charge is added.

» Excess of electrons leads to solvent decomposition.

» Radical anions formed from solvent or TFSI- decomposition may
trigger additional DME or DOL decomposition.
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Li-metal/Electrolyte: Effect of External Electrons
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Reactive molecular dynamics: Passivation layers at the Li anode surface

Li metal
dendritic
growt

Ospina-Acevedo, Guo, Balbuena, J. Mater Chem A, 2020
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Concept of Nanobattery (Seminario’s group, CHEN)
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Classical MD simulations of 9y 9

solid-state electrolyte Li,P,S4l

E,(z)/eV

Ponce, Galvez-Aranda, Seminario;

PCCP, 23, 597-606, 2021 | ~3.86 ¢V
P T
. . - &=0.75 V/A
average energy profile experienced | amg=y
by Li ion as it travels from cathode 9 1 Anode Cathode
LiCoO,

to anode ' Li-metal

estimate of the overpotential needed
to overcome the energy difference
between cathode and anode during
charge

= 8 py K
1 .'stt*i"i!"’*‘-

.., 1...:‘_2.. ’l‘?ﬁ"

000000



Chemical + Mechanical Properties: Multiscale Modeling Si Anodes

25 A

surface/electrolyte interactions at atomistic, nanoscale, mesoscopic levels

D. E. Galvez-Aranda, A. Varma, K. Hankins, J. M. Seminario, P. P. Mukherjee, and P. B. Balbuena,
“Chemical and Mechanical Degradation and Mitigation Strategies for Si Anodes”,
J. Power Sources, 419, 208-218, (2019).
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Multimodal Characterization of Passivation Layers
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Solvent: DME and DOL
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Artificial Intelligence: Promise of Further Discovery

Machine learning modules

for automated analysis @

Inverse computational / O
/

design of battery materials
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Manufacturing &
testing

IA. Novel battery
- materials & interfaces
Al-orchestrated

discovery

Autonomous robotics
for materials

Operando characterization of
battery interfaces

From Battery 2030 Road Map, European Union, 2020



Conclusions

* High-performance computing: crucial role in the understanding
and design of materials for a highly interactive system

* Quantum and classical molecular dynamics, multiscale modeling
approaches

* Analysis of localized and integrated systems
* Predictions and integration with experiments
» Data science approaches
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