Impact of High-Performance Computational Analysis on Design of Energy Storage Devices

> Perla B Balbuena Department of Chemical Engineering Texas A&M University

Texas A&M Research Computing Symposium, May 24, 2021

Forecast of Energy Consumption up to ~ 2050

TOE = ton of oil equivalent

Larcher & Tarascon, Nat. Chem. 2015, 7, 1929

Technology Evolution and Energy Storage Needs

- steam engine (1st) industrialization
- electricity and mass production (2nd)
- computers (3rd) processing and sharing information
- automation (4th)

Renewable Energies Need Batteries

Vistra Energy (California) has the largest battery storage system since Jan 2021 300MW/1,200 MWh

Southern Australia's Hornsdale Power Reserve 150MW/194MWh (<u>https://www.bbc.com/future/article/20201217-renewable-power-the-worlds-largest-battery</u>)

Energy storage: # of devices; battery size

Larcher & Tarascon, Nat. Chem. 2015, 7, 1929

Energy stored during charge and released to an external load during discharge in a typical Li-ion battery

electrode materials

electrolyte materials

ion transport

electron transport

out of equilibrium process!!!

Current Status of Commercial Batteries: Materials Issues

- Shortage of metals (Li, Co, Ni, and others)
- Available low cost, abundant, non-toxic materials (Na, Mg, Ca, Al) → significant new challenges
- Electrolytes: cost, effectiveness (design)

Other Significant Challenges

- Interfacial behavior
- Degradation, cycling, lifetimes
- Fast charge
- Cost
- Safety
- Mechanical stability
- Recycling materials

Intrinsically out of equilibrium system requires "holistic" approaches, instead of "patching solutions"

- Operation under wide range of temperatures
- Lack of understanding of interactions among battery components (anode, cathode, electrolyte)
- Effects of micro or nanostructure in anodes, cathodes, interfaces, interphases

Main Fields where Battery Research is taking Huge Steps

- surface and interfacial characterization, *in situ*, *operando* modes
- first-principles computations, multiscale methodologies
- multimodal characterization (integrating theory and experiments)
- data science approaches

Electrolyte Decomposition under Electron-Rich Environments

(1.1)

(1.2)

(1.3)

(2a.1)

(2b.1)

(2b.2)

(2b.3)

23000 fe

 \bigcirc H \bigcirc Li \bigcirc F \bigcirc O \bigcirc S \bigcirc N \bigcirc C \bigcirc -F or -CF₃

e⁻ e⁻

Thermodynamics and Kinetics

Camacho-Forero and Balbuena. PCCP, 2017, 19, 30861-30873

Li-metal/Electrolyte: Effect of External Electrons

Effect of excess electrons at the Li/Electrolyte Interface: L.E. Camacho and P. B. Balbuena, JPS 2020

Electrolyte Concentrations

1M and 2M Salt (LiFSI and LiTFSI) in DME **Solvent Only:** DME, DOL, and DME:DOL

General Highlights

- Salt decomposition occurs w/ and w/o Q_{exc} . However, the extent of decomposition is higher when an excess of charge is added.
- Excess of electrons leads to solvent decomposition.
- Radical anions formed from solvent or TFSI⁻ decomposition may trigger additional DME or DOL decomposition.

○ H ● Li ○ F ● O ○ S ● N ○ C

) H 🔵

0

Li-metal/Electrolyte: Effect of External Electrons

1M_1 1M_2 2M

Reactive molecular dynamics: Passivation layers at the Li anode surface

ANODE

Sitapure, Lee, Ospina-Acevedo, Balbuena, Hwang, Kwon, AIChE J. 2020

Concept of Nanobattery (Seminario's group, CHEN)

Classical MD simulations of solid-state electrolyte Li₇P₂S₈I

Ponce, Galvez-Aranda, Seminario; *PCCP*, 23, 597-606, **2021**

average energy profile experienced by Li ion as it travels from cathode to anode

estimate of the overpotential needed to overcome the energy difference between cathode and anode during charge

Li energy average w/ & without EF

Chemical + Mechanical Properties: Multiscale Modeling Si Anodes

surface/electrolyte interactions at atomistic, nanoscale, mesoscopic levels

D. E. Galvez-Aranda, A. Varma, K. Hankins, J. M. Seminario, P. P. Mukherjee, and P. B. Balbuena, "Chemical and Mechanical Degradation and Mitigation Strategies for Si Anodes", J. Power Sources, 419, 208-218, (2019).

Multimodal Characterization of Passivation Layers

Artificial Intelligence: Promise of Further Discovery

From Battery 2030 Road Map, European Union, 2020

Conclusions

- High-performance computing: crucial role in the understanding and design of materials for a highly interactive system
- Quantum and classical molecular dynamics, multiscale modeling approaches
- Analysis of localized and integrated systems
- Predictions and integration with experiments
- Data science approaches

Acknowledgements

- Texas A&M High Performance Computing
- Texas Advanced Computing Center, TACC
- US Department of Energy, Vehicle Technology Office, for financial support