Adaptive Bayesian Sum of Trees Model for Covariate Dependent Spectral Analysis

Scott A. Bruce¹

Department of Statistics Texas A&M University

Yakun Wang, Department of Statistics, George Mason University Zeda Li, Paul H. Chook Department of Information System and Statistics, Baruch College, The City University of New York

May 24, 2022

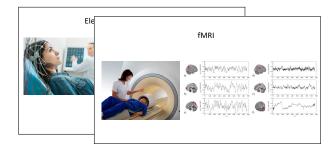
 $^{^1 {\}rm Research}$ is supported by the National Institute Of General Medical Sciences of the NIH under Award Number R01GM140476.

Clinicians and researchers collect a variety of time series data whose oscillatory patterns are of interest.

Clinicians and researchers collect a variety of time series data whose oscillatory patterns are of interest.

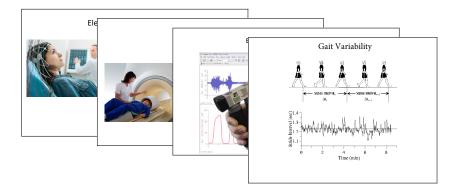


Clinicians and researchers collect a variety of time series data whose oscillatory patterns are of interest.



Clinicians and researchers collect a variety of time series data whose oscillatory patterns are of interest.

Clinicians and researchers collect a variety of time series data whose oscillatory patterns are of interest.



Maturation of gait dynamics

- Immature gait in very young children results in unsteady walking patterns and frequent falls.
- Gait is relatively mature by age 3. However, neuromuscular control continues to develop well beyond age 3.
- Researchers are interested in determining if stride-to-stride dynamics continue to become more steady and regular beyond age 3.

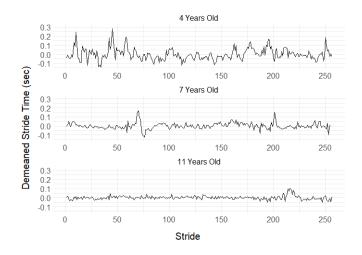
Stride-to-stride time series data

- N = 50 healthy children ages 3-14.
- T = 256 stride times recorded after removing stride times in the first 60 seconds and last 5 seconds.
- Age, gender, height, weight, leg length, and gait speed are also collected for each child.

Goal: To better understand the maturation of gait dynamics with age in the presence of other related covariates.

~ -		~			
0000	000000	00000	00000	000	00
Motivation	Background	Proposed Method	Simulated Examples	Gait Maturation	Remarks

Data From Three Subjects

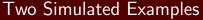


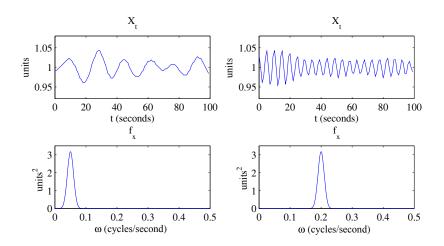
- Consider a zero-mean stationary time series X_t.
- Cramér Representation [Cramér (1942)]:

$$X_t = \int_{-1/2}^{1/2} A(\nu) \exp(2\pi i \nu t) dZ(\nu).$$

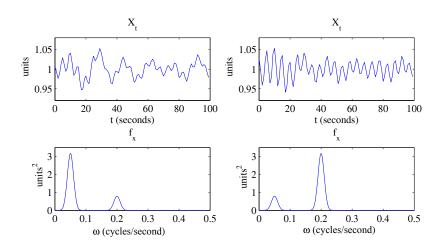
- Power spectrum: $f(\nu) = |A(\nu)|^2$.
- The power spectrum represents a decomposition of variance over frequencies.

• Var
$$(X_t) = \int_{-1/2}^{1/2} f(\nu) d\nu$$
.





Two More Simulated Examples



• Periodogram from $\mathbf{X} = (X_1, \dots, X_T)'$:

$$I(\nu_k) = \frac{1}{T} \left| \sum_{t=1}^T X_t \exp(-2\pi i \omega_k t) \right|^2.$$

•
$$\nu_k = k/T$$
, $k = 1, \ldots, n = \lfloor T/2 \rfloor - 1$.

- Unbiased but noisy estimates of $f(\nu)$.
- Approximately distributed as scaled χ^2 to provide the Whittle likelihood:

$$p(\mathbf{x}|\mathbf{f}) \approx (2\pi)^{-n/2} \prod_{k=1}^{n} \exp\left\{-\frac{1}{2}[\log f(\nu_k) + I(\nu_k)/f(\nu_k)]\right\}$$

Motivation 0000	Background ○○○○●○	Proposed Method 00000	Simulated Examples	Gait Maturation	Remarks 00
Smooth	ning				

- Periodogram can be smoothed to obtain a consistent estimate.
- One approach **Bayesian penalized linear spline** [Wahba (1990)]:

$$\log f(\nu) \approx \alpha + \sum_{s=1}^{S} \beta_s \cos(2\pi s\nu)$$

• Priors [Rosen, Wood, and Stoffer (2012)]

$$\begin{array}{lll} \alpha & \sim & \mathcal{N}(0, \sigma_{\alpha}^2) \\ \boldsymbol{\beta} & \sim & \mathcal{N}(0, \tau^2 D_S), \text{where } D_S = \text{diag}(\{\sqrt{2}\pi s\}^{-2}) \\ \tau & \sim & \text{half-t} \end{array}$$

• Sampling via Metropolis-Hastings and Gibbs steps.

Scott A. Bruce

Motivation Background Proposed Method Simulated Examples Gait Maturation Remarks 0000 00000 00000 00000 000 00

Covariate-dependent Power Spectrum

• Covariate-dependent Cramér Representation

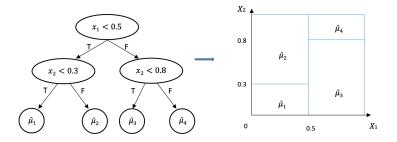
$$X_{\ell t} = \int_{-1/2}^{1/2} A(\boldsymbol{\omega}_{\ell}, \nu) \exp(2\pi i t \nu) dZ_{\ell}(\nu),$$

where $\boldsymbol{\omega} = (\omega_1, \dots, \omega_P)'$ is a *P*-dimensional covariate vector, and $\ell = 1, \dots, L$ independent subjects.

- Covariate-dependent power spectrum: $f(\omega, \nu) = |A(\omega, \nu)|^2$.
- **Goal**: Develop an adaptive method that can capture both smooth and abrupt changes in power spectra across multiple covariates and provide a tool for variable selection.

One Option: Tree-based Approach

• Regression tree illustration



- Tree-based models provide a flexible and parsimonious approach for partitioning multiple covariates.
- For scalar responses: Bayesian Additive Regression Tree (BART) model [Chipman et al. (2010)]

Adaptive Bayesian Sum of Trees Model

• Idea: Develop a Bayesian sum-of-trees model for log $f(\omega, \nu)$

$$\log f(\boldsymbol{\omega}, \boldsymbol{\nu}) \approx \sum_{j=1}^{M} \sum_{b=1}^{B_j} \delta(\boldsymbol{\omega}; U_j, b) \log f_{bj}(\boldsymbol{\nu}),$$

- *M* is the number of trees
- U_j represents the jth tree that has B_j terminal nodes
- δ is a function that identifies terminal node membership such that $\delta(\omega_{\ell}; U, b) = 1$ if the ℓ th observation falls into the *b*th terminal node and $\delta(\omega_{\ell}; U, b) = 0$ otherwise.
- Model specification for log f_{bj}(ν) then follows directly from the Bayesian penalized linear spline introduced previously.

• A regularization prior is applied to encourage each tree to be a weak learner:

 $\Pr(\operatorname{SPLIT}) = \alpha (1+d)^{-\theta}, \qquad \alpha \in (0,1), \ \theta \in [0,\infty),$

d is the depth of a tree, $\alpha = 0.95$ and $\theta = 2$ as default. [Chipman et al. (2010)]

- Terminal node parameters and trees are assumed to be independent a priori.
- Uniform priors on split variables and cut points.
- Sparsity-inducing Dirichlet prior on split variables can also be used for improved variable selection. [Linero, 2018]

 Backfitting Markov chain Monte Carlo (MCMC) on 'residual' of periodogram

$$\mathbf{R}_{\ell j}(\nu_k) = \log \mathbf{I}_{\ell}(\nu_k) - \sum_{i \neq j} \sum_{b=1}^{B_j} \delta(\boldsymbol{\omega}; U_i, b) \log f_{bi}(\nu)$$

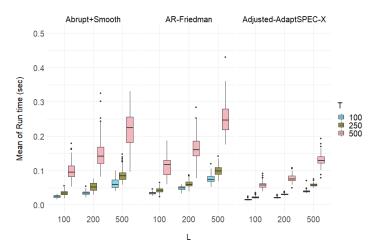
allows for updating each individual tree structure in turn.

- Reversible jump MCMC
 - Birth: splitting a terminal node into two child nodes
 - Death: dropping two terminal child nodes belonging to the same internal node
 - Change: modifying the variable and cut point associated with an internal node with two terminal child nodes

Overview of Proposed Approach

- Adaptively partition covariate space using tree structures.
- Bayesian penalized spline model for local spectra estimation within each terminal node.
- Bayesian Backfitting MCMC and Reversible jump MCMC techniques to sample from posterior of the trees
- Inference averaged over distribution of trees.

Motivation	Background	Proposed Method	Simulated Examples	Gait Maturation	Remarks
0000	000000	00000	●○○○○	000	00
Run tim	es				



Mean run times for a single tree update over 100 replicates of the three simulation settings with M = 5 trees.

Simulated Abrupt+Smooth Example

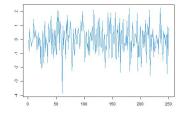
• AR(1):
$$x_{\ell t} = \phi_{\ell} x_{\ell t-1} + \epsilon_{\ell t}$$

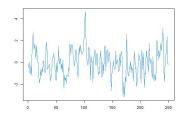
•
$$\phi_\ell =$$

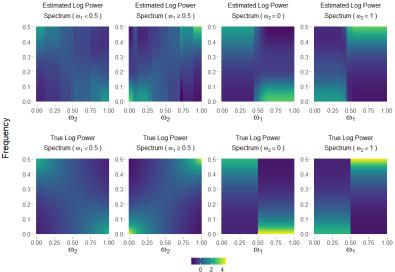
$$\begin{cases} -0.7 + 1.4\omega_2 & \text{for } 0 \le \omega_1 < 0.5 \\ 0.9 - 1.8\omega_2 & \text{for } 0.5 \le \omega_1 \le 1, \end{cases}$$

•
$$\ell = 1, \cdots, L = 100$$
 subjects

- $t=1,\cdots,T=250$
- $\omega_1, \omega_2 \overset{i.i.d.}{\sim} U(0,1)$
- $\epsilon_{\ell t} \stackrel{i.i.d.}{\sim} N(0,1)$







Scott A. Bruce

 Motivation
 Background
 Proposed Method
 Simulated Examples
 Gait Maturation
 Remarks

 0000
 00000
 00000
 00000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Simulated Latent Variable Example

• AR(2):
$$x_{\ell t} = \phi_{z_{\ell} 1} x_{\ell t-1} + \phi_{z_{\ell} 2} x_{\ell t-2} + \epsilon_{\ell t}$$

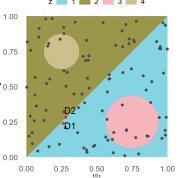
Latent variable mapping

$$(\phi_{z_\ell 1},\phi_{z_\ell 2}) = egin{cases} (1.5,-0.75), z_\ell = 1 \ (-0.8,0), z_\ell = 2 \ (-1.5,-0.75), z_\ell = 3 \ (0.2,0), z_\ell = 4 \ \end{array}$$

• $\ell = 1, \cdots, L = 100$ subjects

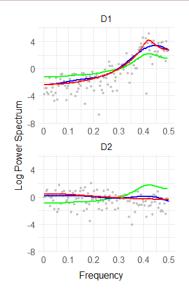
•
$$t = 1, \cdots, T = 250$$

- $\omega_1, \omega_2 \overset{i.i.d.}{\sim} U(0,1)$
- $\epsilon_{\ell t} \overset{i.i.d.}{\sim} N(0,1)$



Simulated Latent Variable Example

- Red line: true log power spectra
- Gray points: log periodogram ordinates
- Blue line: estimated log power spectra using the proposed Bayesian sum of trees model
- Green line: estimated log power spectra using the competing smooth model



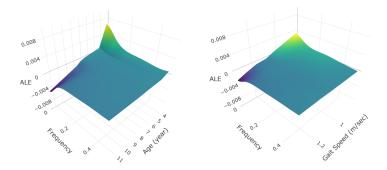
\sim \cdot	aturation		00000	● 00	00
Motivation	Background	Proposed Method	Simulated Examples	Gait Maturation	Remarks

• Data:

- N = 50, T = 256 stride-to-stride time series.
- Ages 3-14 years old.
- Age, gender and gait speed as covariates.
- Low frequencies (LF)(0.05-0.25 stride⁻¹) represent fluctuations over a longer-term scale (immature gait).
- High frequencies (HF) (0.25-0.5 stride⁻¹) represent fluctuations over a shorter-term scale (mature gait).

Covariate Effects on Power Spectrum

• Accumulated local effects (ALE) is a method for evaluating covariate effects.



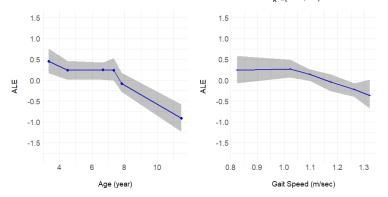
- ① Power over all frequencies decreases as age increase.
- Power in low frequencies decreases much more with age relative to higher frequencies.

Scott A. Bruce

Texas A&M Research Computing Symposium 2022

Covariate Effects on Power Spectrum

• Low-to-high frequency ratio $\frac{\widehat{\mathsf{LF}}}{\mathsf{HF}}(\omega) = \frac{\sum_{\nu_k \in (0.05, 0.25)} \widehat{f}(\omega, \nu_k)}{\sum_{\nu_k \in [0.25, 0.5)} \widehat{f}(\omega, \nu_k)}.$



Significant decreases for ages above 7 years and for speeds above 1 $\,\rm m/sec.$

Motivation	Background	Proposed Method	Simulated Examples	Gait Maturation	Remarks
0000	000000	00000	00000		●○
Current	and Fut	ure Work			

Current work

- Proposed a nonparametric adaptive Bayesian sum of trees model for covariate-dependent spectral analysis.
- Captures both abrupt and smooth changes.
- Handle complex nonlinear and interaction effects.

Future work

- Extend to time- and covariate-dependent time series.
- Apply alternative partitioning frameworks such as Voronoi tessellations. [Payne et al., 2020]

Motivation 0000	Background 000000	Proposed Method	Simulated Examples	Gait Maturation 000	Remarks ●○
Current	and Fut	ure Work			

Current work

- Proposed a nonparametric adaptive Bayesian sum of trees model for covariate-dependent spectral analysis.
- Captures both abrupt and smooth changes.
- Handle complex nonlinear and interaction effects.

Future work

- Extend to time- and covariate-dependent time series.
- Apply alternative partitioning frameworks such as Voronoi tessellations. [Payne et al., 2020]

THANK YOU!

- Accumulated local effects (ALE) is a method for evaluating covariate effects
- ALE for $\omega_j = x$ on the power spectrum is

$$f_{j,\mathsf{ALE}}(x,\nu) = \int_{z_{0,j}}^{x} E_{\omega_{i,j}|\omega_j} \left[\frac{\delta f(\omega,\nu)}{\delta \omega_j} \middle| \omega_j = z_j \right] dz_j - \mathsf{constant}$$

- ω = (ω_j, ω_{\j}) where ω_j denotes the *j*th covariate and ω_{\j} denotes all covariates other than the *j*th covariate
- Z_j = {z_{0,j},..., z_{H,j}} is a collection of H + 1 partition points over the effective support of ω_j
- The constant is a value to vertically center the plot