Deep Learning/AI Lifecycle with Dell EMC and bitfusion

Bhavesh Patel

Anna and an anna an anna an anna an

Dell EMC Server Advanced Engineering

The second secon

and the second s

and the second s

Abstract

This talk gives an overview of the end to end application life cycle of deep learning in the enterprise along with numerous use cases and summarizes studies done by Bitfusion and Dell on a high performance heterogeneous elastic rack of DellEMC PowerEdge C4130s with Nvidia GPUs. Some of the use cases that will be talked about in detail will be ability to bring on-demand GPU acceleration beyond the rack across the enterprise with easy attachable elastic GPUs for deep learning development, as well as the creation of a cost effective software defined high performance elastic multi-GPU system combining multiple DellEMC C4130 servers at runtime for deep learning training.

Deep Learning and AI Are being adopted across a wide range of market segments

DELLEMC

Industry/Function Al Revolution

Computer Vision & Speech, Drones, Droids ROBOTICS Interactive Virtual & Mixed Reality ENTERTAINMENT Self-Driving Cars, Co-Pilot Advisor AUTOMOTIVE FINANCE Predictive Price Analysis, Dynamic Decision Support PHARMA Drug Discovery, Protein Simulation HEALTHCARE Predictive Diagnosis, Wearable Intelligence ENERGY **Geo-Seismic Resource Discovery EDUCATION** Adaptive Learning Courses SALES **Adaptive Product Recommendations** SUPPLY CHAIN **Dynamic Routing Optimization** CUSTOMER SERVICE **Bots And Fully-Automated Service** MAINTENANCE Dynamic Risk Mitigation And Yield Optimization

...but few people have the time, knowledge, resources to even get started

DELLEMO

PROBLEM 1: HARDWARE INFRASTRUCTURE LIMITATIONS

Increased cost with dense servers
TOR bottleneck, limited scalability
Limited multi-tenancy on GPU servers (limited CPU and memory per user)

 Limited to 8-GPU applications
 Does not support GPU apps with: O High storage, CPU, Memory requirements

PROBLEM 2: SOFTWARE COMPLEXITY OVERLOAD

Need to Simplify and Scale

SOLUTION 1/2: CONVERGED RACK SOLUTION

Up to 64 GPUs per application
GPU applications with varied storage, memory, CPU requirements
30-50% less cost per GPU
> {cores, memory} / GPU
>> intra-rack networking bandwidth
Less inter-rack load
Composable - Add-as-you-go

Composable compute bundle

SOLUTION 2/2: COMPLETE, STREAMLINED AI DEVELOPMENT

1 DEVELOP

Develop on pre-installed, quick start deep learning containers.

- Get to work quickly with workspaces with optimized preconfigured drivers, frameworks, libraries, and notebooks.
- Start with CPUs, and attach Elastic GPUs on-demand.
- All your code and data is saved automatically and sharable with others.

Transition from development to training with multiple GPUs.

- Seamlessly scale out to more GPUs on a shared training cluster to train larger models quickly and cost-effectively.
- Support and manage multiple users, teams, and projects.
- Train multiple models in parallel for massive productivity improvements

Push trained, finalized models into production.

- Deploy a trained neural network into production and perform realtime inference across different hardware.
- Manage multiple AI applications and inference endpoints corresponding to different trained models.

Dell EMC Deep Learning Optimized servers

D&LLEMC

C4130 DEEP LEARNING Server

DELLEMC

GPU DEEP LEARNING RACK SOLUTION

Pre-Built App Containers

- GPU and Workspace Management

- Elastic GPUs across the Datacenter

- Software defined Scaled out GPU Servers

R730

Configuration Details

Features	R730	C4130
CPU	E5-2669 v3@2.1GHz	E5-2630 v3@ 2.4Ghz
Memory	4GB	1TB/node; 64G DIMM
Storage	Intel PCIe NVME	Intel PCIe NVME
Networking IO	CX3 FDR InfiniBand	CX3 FDR InfiniBand
GPU	NA	M40-24GB
TOR Switch	Mellanox	SX6036- FDR Switch
Cables	FDR	56G DCA Cables

GPU DEEP LEARNING RACK SOLUTION

bitfusion

Pre-Built App ContainersGPU and Workspace

- Management
 Elastic GPUs across the Datacenter
- Software defined Scaled out GPU Servers

End to End Deep Learning Application Life Cycle

2 Train

...but wait, 'converged compute' requires network attached GPUs...

D&LLEMC

BITFUSION CORE VIRTUALIZATION

GPU Device Virtualization

 Allows dynamic GPU attach on a perapplication basis

Features

- APIs: CUDA, OpenCL
- Distribution: scale-out to remote GPUs
- Pooling: Oversubscribe GPUs
- Resource Provisioning: Fractional vGPUs
- High Availability: Automatic DMR
- Manageability: Remote nvidia-smi
- *Distributed* CUDA Unified Memory
- Native support for IB, GPUDirect RDMA
- Feature complete with CUDA 8.0

PUTTING IT ALL TOGETHER

NATIVE VS. REMOTE GPUs

Completely transparent: All CUDA Apps see local and remote GPUs as if directly connected

Results

REMOTE GPUs - LATENCY AND BANDWIDTH

- Data movement overheads is the primary scaling limiter
- Measurements done at application level cudaMemcpy

Native GPUs

Bandwidth Matrix (GB/s)

Latency Matrix (us)

Fast Local GPU copies PCIe Intranode copies

16 GPU virtual system: Naive implementation w/ TCP/IP

16 GPU virtual system: Bitfusion optimized transport and runtime

	IB+RDMA attached GPUs											TCP/IP over IPoIB																						
	Bandwidt	Bandwidth Matrix (GB/s)											Bandwidth Matrix (GB/s)																					
			h B	3/	1 4+	5	6	c ⁷ n	Å	θ	10	1 ¹	12	13	14			src\ds	1 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
•	Jallie	11.6 1	.1/10.1	10.5	+ 9.5	110	10.5	2.D	10.8	11.3	107	LIBL	10.0	11.2	109	108	1	Н	11.4	10.6	10.9	10.8	11.3	11.1	11.6	11.3	10.7	0.1	10.7	11.1	11.3	11.2	0.0	11.1
	0	94.4 5	.7 5.6	5.5	3.9	4.0	3.9	3.9	3.9	3.9	3.9	3.8	3.8	3.7	3.8	3.8		0	94.1	5.3	5./	5.8 5.4	0.0	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.3	0.0	0.2	0.5
	Repla	C A	3 91		M	Ä	G	all	S	VV I		3.0	là	ţ1	V P	3.	3	2	5.5	5.5	93.3	5.4 5.7	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.2	0.0	0.2	0.0
	3	5.4 5	.3 5.4	98.9	3.8	4.1	3.9	3.9	3.9	4.0	4.0	3.9	3.9	4.0	4.0	3.8		3	5.3	5.3	5.5	99.2	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.1	0.0	0.3	0.2	0.3
	Dunti	38 3	7 3.7	37	91.4	4.8	4.8	5.6	£ .9	3.9	3.9	3.9	3.9	1.8	3.	38	Ň	4	0.0	0.2	0.0	0.3	####	5.7	5.5	5.7	0.4	0.0	0.4	0.2	0.2	0.0	0.3	0.3
	RUII	3.B	338		4.8	911	48	4.2	B.8	B. 9	<u>-3.8</u> C	74.b I			3.8	32	N.	5	0.3	0.5	0.3	0.1	5.6	94.4	5.6	5.4	0.2	0.0	0.0	0.0	0.3	0.1	0.1	0.1
	6	3.8 3	.7 3.7	3.8	4.7	5.0	####	5.2	3.9	3.9	3.9	3.9	3.8	3.9	3.9	3.7		6	0.3	0.3	0.3	0.2	5.5	5.6	97.7	5.7	0.2	0.2	0.2	0.0	0.1	0.1	0.0	0.3
	cudà	Md	·m?		4.8	4.8	5.0	94.7	3.8	4.0	4.0	4.0	3.9	3.9	3.9	3.9		7	0.2	0.0	0.3	0.3	5.6	5.2	5.3	99.2	0.0	0.3	0.0	0.1	0.1	0.0	0.2	0.3
		3.8 3	8.E∎8. oco		3.8	3.8	3.8	3.8	89.8	5.6	5.6	5.6	4.0	3.9	3.9	3.9		ð Q	0.5	0.3	0.3	0.0	0.2	0.0	0.0	0.0	99.5 5.6	5.7	5.0 5.3	5.0 5.4	0.5	0.0	0.0	0.1
	ми	3.8 3	.9 3.8 8 3.9	3.8	3./ 27.	3.8 2.9	3.8	3.8	5.4	93.0	00.5	5.5	4.0	3.9	3.9	3.9		10	0.1	0.0	0.2	0.5	0.4	0.0	0.0	0.0	5.3	5.4	99.2	5.5	0.0	0.0	0.0	0.3
	MULL	- 1 7 a		\mathbf{G}_{8}^{\prime}	3.9		L.	1 <u>[C</u>	al	<u>.</u> [0	Τ.	####	X_0^{\prime}	1e	4.E		N	11	0.3	0.2	0.0	0.0	0.0	0.0	0.2	0.2	5.4	5.7	5.7	99.5	0.0	0.5	0.3	0.3
	12	3.7 3	.8 3.9	3.8	3.9	3.8	3.8	3.8	3.8	3.8	3.7	3.8	94.4	5.3	5.8	5.7		12	0.0	0.0	0.3	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	####	5.6	5.8	5.7
	Runti	2	. 2.8	nt	3.7	ז'7	3.7	+37	37	ĉ .8	4.0	38	54	92.5	56	56		13	0.3	0.3	0.5	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.7	99.2	5.7	5.7
	I\UII <u>k</u> I	3.7	.8 3.9	3.8	3.7	3.9	- 5,7	اواد ا	3.8	3.7	3.9	4.0	5.6	5.6	#####	57	Г., 	14	0.4	0.0	0.3	0.3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.2	5.5	5.6	####	5.7
	15	3.9 3	.8 3.9	3.9	4.0	4.0	3.8	4.0	3.9	3.9	4.0	3.9	5.6	5.5	5.8	####		15	0.0	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	5.6	5.7	5.7	####
	execi	JII	<u>)</u> η,		ISI	cri	D	JL	90	l C	a	ะท	In		СV	'e	V Latency I	Matrix	(us)															
			15 <i>1 "</i> 1 2	2	4	5	6	7	0	٥	10	11	12	12	14	15	Latency	src\ds	1 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Sic (us H	8	5 7	9	8	6	12	6	13	5	12	6	6	9	5	6		Н	11.9	8.93	6.56	9.34	12.9	12.9	5.86	7.81	12.2	9.54	8.99	5.6	7.84	9.31	5.76	10.4
	• • • 0	7 1	.3 14	14	14	13	11	14	13	13	14	14	14	13	12	14		0	7.36	130	153	139	218	195	198	198	221	236	187	186	203	153	193	155
	1	14	7 12	15	13	11	11	12	12	12	12	12	14	14	14	14		1	150	7.17	137	141	196	184	188	195	201	197	188	217	164	179	172	152
	2	13 1	.1 7	14	12	12	13	12	12	13	13	14	12	12	13	14		2	175	146	7.62	127	211	220	221	219	215	215	190	219	162	162	165	182
	3	14 1	.3 13	7	14	15	13	14	14	12	13	13	14	14	13	12			106	1.34	138	1.42	7 14	151	1/10	151	203	204	212	191	160	1//	166	157
	4	13 1	.3 12	13	8	12	12	14	12	14	13	13	12	12	13	13		5	168	162	162	153	149	7.2	128	152	198	207	208	215	177	167	166	170
	5	14 1	.3 14 1 13	14	14	8 15	12	13	11	15	13	12	12	12	12	13		6	172	168	163	169	145	143	7.26	149	207	199	200	219	163	155	162	182
	7	13 1	4 12	13	12	13	12	7	13	14	11	14	14	11	13	13		7	156	167	178	178	150	156	142	8.29	192	190	237	212	173	166	171	160
	8	14 1	4 11	12	14	15	11	14	7	13	14	13	15	12	27	14		8	163	155	170	167	223	216	217	219	7.17	146	146	159	161	169	166	156
	9	12 1	.4 14	13	13	12	15	12	23	7	14	13	15	12	12	13		9	164	166	193	179	199	228	225	207	152	6.24	115	152	166	160	157	158
	10	14 1	.4 11	14	13	14	12	12	14	12	8	15	14	13	12	14		10	173	191	209	172	206	257	183	203	159	109	7.42	154	162	162	197	159
	11	13 1	.2 13	13	12	12	14	23	12	13	14	8	14	22	12	13		11	164	1/5	1/1	164	214	222	220	211	151	142	145	7.14	161	1/2	16/	164
	12	13 1	.3 13	12	13	12	13	13	13	14	12	13	6	14	12	13		13	186	165	157	154	245	195	191	223	205	200	249	196	140	6.24	139	139
	13	12 1	.3 12	13	12	14	12	13	12	12	13	14	15	7	12	14		14	162	158	159	193	205	210	183	257	222	198	196	202	133	133	6.46	167
	14	13 1	4 12	14	13	11	11	14	12	11	12	14	15	14	15	14		15	195	188	197	201	238	244	205	218	219	191	201	210	134	139	136	7.04
		12 1	.2 14	13	12	12	11	12	12	12	12	14	12	14	12		1	1																

SLICE & DICE - MORE THAN ONE WAY TO GET 4 GPUs

TRAINING PERFORMANCE

(sec)

an 250

Total Trai

Other PCIe GPU Configurations Available

Config 'G'

Further reading:

http://en.community.dell.com/techcenter/high-performance-computing/b/gener al_hpc/archive/2016/11/11/deep-learning-performance-with-p100-gpus

<u>http</u>

://en.community.dell.com/techcenter/high-performance-computing/b/general_h pc/archive/2017/03/22/deep-learning-inference-on-p40-gpus

NvLink Configuration

Config 'K'

- 4 P100-16GB SXM2 GPU
- 2 CPU
- PCIe switch
- 1 PCIe slot EDR IB

NvLink Configuration

Config 'L'

- 4 P100-16GB SXM2 GPU
- 2 CPU
- PCle switch
- 1 PCIe slot EDR IB
- Memory : 256GB w/16GB
 @ 2133
- OS: Ubuntu 16.04
- CUDA: 8.1

Software Solutions

Overview – Bright ML

Dell EMC has partnered with Bright Computing to offer their Bright ML package as the software stack on Dell EMC Deep learning hardware solution.

Bright ML Overview

Bright 8.0 Features

- Bright View administrator web interface
- Cloud bursting support for Azure
- New monitoring subsystem
- Ubuntu 16.04 LTS support
- OpenStack Newton
- Mesos integration (+ Marathon)
- Improved Kubernetes integration
- Updated and new machine learning packages
- NVIDIA DCGM integration
- CephFS support
- Job based metrics enabled by default

FRAMEWORKS	LIBRARIES
Caffe / (Caffe2)	MLPython
TensorFlow	cuDNN
Theano	DIGITS
Torch	CaffeOnSpark
(CNTK)	NCCL
(MXNet)	(GIE)
(Caffe-MPI)	(Keras)

Machine Learning in Seismic Imaging Using KNL + FPGA – Project # 1

DELLEMC

Bhavesh Patel – Server Advanced Engineering Robert Dildy - Product Technologist Sr. Consultant, Engineering Solutions

Abstract

This paper is focused on how to apply Machine Learning to seismic imaging with the use of FPGA as a coaccelerator.

It will cover 2 hardware technologies: 1) Intel KNL Phi 2) FPGA and also address how to use Machine learning for seismic imaging.

There are different types of accelerators like GPU, Intel Phi but we are choosing to study how we can use i-ABRA platform on KNL + FPGA to train the neural network using Seismic Imaging data and then doing the inference.

Machine learning in a broader sense can be divided into 2 parts namely : Training and Inference.

Background

Seismic Imaging is a standard data processing technique used in creating an image of subsurface structures of the Earth from measurements recorded at the surface via seismic wave propagations captured from various sound energy sources.

There are certain challenges with Seismic data interpretation like 3D is starting to replace 2D for seismic interpretation.

There has been rapid growth in use of computer vision technology & several companies developing image recognition platforms. This technology is being used for automatic photo tagging and classification. The same concept could be applied to identify geometric patterns in the data and generate image captions/descriptions. We can use Convolutional Neural Networks (CNN) to learn visual concepts using massive amounts of data which would help in doing objective analysis of it.

The use of machine learning and image processing algorithms to analyze, recognize and understand visual content would allow us to analyze data both in Supervised neural networks(SNN) and unsupervised neural networks (UNN) like CNN.

Observing both plane and cross-section

Seismic Stratigraphic image learning

one km

Seismic Geomorphology image learning

Models in plane and cross-section

Seismic Stratigraphic image models

Train the data to recognize geometrical patterns and utilization of "iPhoto" and "Facebook" technology and methodology to interact with the training.

Seismic Geomorphology image models

Algorithms already established in geological modeling software.

Require some guidance with a low frequency surface model in data to mimic dips and curvatures in stratigraphic response of data

Tags with 'facies' recognition

You give input to the unsupervised training of your data. It will automatically identify similar ones and/or give you a choice of places it finds similar, and you choose to tell its right or wrong.

Solution

For this paper we will be using the following Hardware and Software platforms:

Hardware Platform:

- C6320P Sleds with Intel KNL Phi + Intel Arria 10 (A10PL4) FPGA adapter.

Software Platform:

- i-ABRA Deep learning framework

This will be a joint collaboration with :

- Dell EMC
- Intel
- i-ABRA
- Seismic Imaging firm TBD

