(intelﬂ) Fuel your Insight

Code Modernization and
Software Defined
Visualization

Jefferson Amstutz, Software Engineer

Legal Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware,
software or service activation. Performance varies depending on system configuration. No computer system
can be absolutely secure. Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors.

Performance tests, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products.

Copyright © 2017 Intel Corporation. All rights reserved. Intel, Intel Inside, the Intel logo, Intel Xeon and Intel
Xeon Phi are trademarks of Intel Corporation in the United States and other countries. *Other names and
brands may be claimed as the property of others.

Copyright © 2017 Intel Corporation, All Rights Reserved

2017 TAMU Research Computing Week

Agenda

1 Software Defined Visualization (SDVis)
[l Motivation
U Intel SDVis Projects
0 SDVis Examples
1 Delivering High Performance CPU Libraries
U Multithreading

I Vectorization

Software Defined
Visualization

Growing Challenges in HPC

System Divergent Barriers to

Bottlenecks Workloads Extending
e

il 14/

Memory | I/O | Storage Democratization at Every
Energy Efficient Scale | Cloud Access |

Performance Exploration of New
Space | Resiliency | Parallel Programming
Unoptimized Software Models

Resources Split Among
Modeling and Simulation |
Big Data Analytics | Machine
Learning | Visualization

2017 TAMU Research Computing Week

The Challenge Moving to ExaScale
Ex: Visualization Analysis

2008->2016: using dedicated hardware and specialized
software

Bottlenecks...

I/0, Scheduling, Memory Size, Power,...

HW Visualization

v

HPC cluster performs Dedicated Visualization Client devices
modeling and simulations HW (GPUs) and SW view
the final images

2017 TAMU Research Computing Week

How?

Intel-Supported Software Defined Visualization

(SDVis)!

http://software.intel.com/sdvis
T —— Software

= s, Defined

\ 'sualization.

Standard OpenGL Image

2017 TAMU Research Computing Week

Embree
CPU Optimized Ray Tracing Algorithms
‘Tool kit’ for Building Ray Tracings Apps
Broadly Adopted by 3rd Party ISVs
More at

OSPRay

- Rendering Engine Based on Embree

= APl Designed to Ease Creation of
Visualization Software

- More at

OpenSWR

High Performance CPU Vis Rasterization
Fully Integrated into MESA v12.0+
Supports ParaView, Visit, VTK, EnSight,
VL3

More at

http://software.intel.com/sdvis
http://www.sdvis.org/

Our Vision: Scalable, Flexible Vis Rendering that Runs

Anywhere!

Standalone Laptops or
Workstations

2017 TAMU Research Computing Week

Cloud or
Network

Large Compute+Vis clusters
Big Memory Nodes or with

Rendering Focused Clusters Local or Remote Clients

intel) |

Goal: Address Large-scale, High Performance,

and High Fidelity Visualization via “Modern”

Softygenas understanding of data impacting science &

discovery

High fidelity, more realistic images even as data sets become increasingly
larger,

and more complex; no need to compromise data resolution

Solve computing + modeling problem together (in-situ vis)
Essential SW development suite that makes concurrent simulation and
visualization efficient - users can work interactively and get results quicker

One system
Use came cvctem far hnth cimiilatinn and vicualizatinn_avnid data transfer

probler

2017 TAMU Research Computing Week

Benefits of SDVis

* Open-sourced technology delivering vivid
visualization of complex, enormous data
sets

* Innovative software libraries for
visualizing results with

by UnlOCklng the para”ellsm already In Gravational Waves : GR-Chombo AMR Data, Stephen Hawking CTC,

yOU r System UCambridge; Queens College, London; visualization, Carson Brownlee,
Intel, ParaView)

images for gaining deeper
insights in science and industry, faster

» Software Only solution - No
card cost, no card maintenance, lower
power bills

Magnetic Reconnection Model, Courtesy Bill : : - Max

Duaghton(LANL) and Berc Geveci(Kitware) Institute for Biophysical
Chemistr

2017 TAMU Research Computing Week

Hi-Fidelity Visualization with...

" ... scalable image quality

= .. scalable data model size

" ... scalable rendering cost

Data set provided by Florida International University

2017 TAMU Research Computing Week

OpenSWR Software
Rasterizer (

*High performance open source
software implementation of OpenGL*

rasterizer

- Fully multi-threaded and vectorized for Intel®
processors

- Can access full system memory - highest resolution
data

- Leverages community development effort (MESA)

*Drop in replacement for OpenGL
library

*Available smce JuIy 16 in Mesa

27347 1AL rese~ren Conmuting v/ek

’l’ ParaView

EnSight

Exfrome Vispaimato Safwan

http://www.mesa3d.org/
http://www.openswr.org/

VTK Benchmark + OpenSWR

Application: VTK GLBenchmarking

OpenSWR Performance Advantage

900 Over llvmpipe Description: Scientific visualization toolkit
800 gox Availability:
74 x " Code:
700 * Recipe:
67 x
Usage Model:
600 . . - .
60 x * Native on Xeon, with full core utilization
500 " AVX/AVX2 Intrinsics
a3 Highlights:
@] X . .
& 400 * OpenSWR enables simple OpenGL driver replacement, no app
5 change
300 = VTK is the scientific visualization toolkit behind ParaView and
S0 21 x Vislt, and a good platform for showing comparative
15y 18X performance across typical vis rendering workloads
log 13X * End-User benefits: Ability to achieve competitive performance
I I and the flexibility of IA for rendering / visualization applications
0o M— - - - - — — - = Results:
QQ QQ 00 QQ QQ 00 QQ 00 QQ
N N S PN N N NS OpenSWR provides interactive rendering across tested
S T R U workloads and dramatic performance improvements over
mesa llvmpipe
m OpenSWR BDW (mesa-13.0) Scene Complexity " OpenSWR on Xeon exhibits strong core scaling to optimally
m llvmpipe BDW (mesa-13.0) (triangles per frame) - . .o . .
utilize available resources. Further KNL optimizations are in
Software and workloads used in performance tests may have been optimized for performance only on Intelﬁw' erf’ rs. Performance tests, such as SYSmark* and MobileMark*, are
.measure'd using specific computer systems, components, softwgare, operations and functions. Any .chang.et m _t_ factors may cause the result_s Fo vary. You should consult other

http://www.intel.com/performance

” .
2017 TAMU Research Computing Week Other names and brands may be claimed as the property of others.

http://ospray.github.io/
http://openswr.org/
http://www.intel.com/performance

Mesa/OpenSWR Benchmarks

manyspheres.py
67 MiPolys

: TimingTests
30 MiTris

GLBenchmarking
30MiTris

2017 TAMU Research Computin ee

Intel® Xeon Phi™ 7210 Processor
SWR vs. Mesa LLVMPIPE PERFORMANCE RATIO OVER TIME

146x
125
115x
108x 109x
100
75 71x
66X
58x 56x
52x 51x 51x
50 49x 49x
31x
25
15x
0 IIIII
mesa-12/swr mesa-13/swr mesa-17.0/swr mesa-17.1/swr dev/swr

® manyspheres.py B TimingTests ®m GLBenchmarking

2017 TAMU Resezich Corapuling s\eek

http://www.intel.com/performance

Ray Tracing Foundation:
Embree Ray Tracing Kernel Library

Provides highly optimized and scalable ray tracing kernels

* Acceleration structure build and ray traversal

* Single Ray, Ray Packets(4,8,16), Ray Streams(N)

Targets up to photorealistic professional and scientific rendering applications
Highest ray tracing performance on CPUs

* 1.5-6x speedup reported by users

Support for latest CPUs / ISAs

" Intel® Xeon Phi™ Processor (codenamed Knights Landing) - AVX-512
API for easy integration into applications
Free and open source under Apache 2.0 license

" http://embree.github.com

2017 TAMU Research Computing Week

Performance: Embree vs. NVIDIA* OptiX*

Frames Per Second (Higher is Better), 1024x1024 image resolution

M |ntel® Xeon® Processor
E5-2699 v4
2 x 22 cores, 2.2 GHz

HIntel® Xeon Phi™ Processor
7250
68 cores, 1.4 GHz

ENVIDIA TITAN X (Pascal)
Coprocessor
12 GB RAM
Bentley Crown Dragon Karst Fluid Flow Power Plant Embree 2.13.0, ICC 2016 Update 1, Intel®

(2.3M Tris) (4.8M Tris) (7.4M Tris) (8.4M Tris) (12.8M Tris) SPMD
Program Compiler

(Intel® ISPC) 1.9.1

NVIDIA® OptiX* 4.0.1, CUDA" 8.0.44

Source: Intel

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
information go to http://www.intel.com/performance.

http://www.intel.com/performance

Embree Adoption*

UBISOFT"

MOTION PICTURES

2
2SS 3DEXCITE

*Many other announced users incl.:

EasternGraphics

I\ AUTODESK.

FluidRay &~

Physically Based Rendore

Simlab Soft

Bringing Art closer

Pixar, Weta Digital, Activision, Chaos V-Ray, Ready

At Dawn, FrostBite, EpicGames UnReal, High Moon, Blue Sky, UBISoft MP, Framestore,

OSPRay: A Ray-Tracing based Rendering Engine

for Visualization gr O TACC
- B W Kitware

"Build on top of Embree; Launched June UNIVERSITYOF _
f& Ilparaview

2016 Jdr
*Scalable Visualization targeted features
VMUQ‘IQIECUI:H Dynamics

OSTJNGRA‘(' PowerCT
"Packed it up in an ‘easy-to-use’ rendering

Bray
EasternGraphi
library for visualization NAS e ﬁ%ﬁtﬁh Argonne &

"= Same "spirit" as OpenGL, but different A
API

* Surfaces (both polygonal and non-
polygonal)

" Volumes, and volume rendering

rendering/shading
methods

" Scalable Cluster Wide Rendering

Performance: OSPRay vs. GPU

Frames F;eor Second (higher is better), 1024x1024 image resolution

80

70 B |ntel® Xeon®
Processor_x000d_OSPRay renderer

60

50

40 E'NVIDIA Titan X_x000d_Coprocessor
OpenGL renderer_x000d_12 GB RAM

30+
20 -
10 -
0-

Intel® Xeon® Processor E5-2699
v3
2 x 18 cores, 2.3 GHz

ParaView 5.2.0 RC2 w/ OSPRay
1.1.0

NVIDIA* Driver 370.28, default
configuration

Source: Intel

L}
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
information go to http://www.intel.com/performance.

http://www.intel.com/performance

Software Defined Visualization (SDVis)

Open-Source Libraries Developed by Intel
What is it? Used in leading applications for visualization
Optimized for parallel processing architectures

Access to large memory space for large data sets
Provides Improved visual fidelity
Cost efficient, interactive visualization performance

Professional Rendering Scientific Visualization
Application Application
OpenGL
Renderer Renderer OSPRay
OpenGL (Mesa) Renderer*
Embree Kernel Library*
OpenSWR* OSPRa);:Embre
Processor (Intel® Xeon ® & Intel® Xeon _
Phi™) Processor (Intel® Xeon ® & Intel® Xeon Phi™)

* Intel® Developed Software

Software defined visualization is the use of optimized libraries to enable
high-performance, high-fidelity visualization applications on Intel®

platforms @

ParaView v5.x with integrated OSPRay and
OpenSWR

Brain Tumor monitoring
and treatment

3D interactive @ 10-
20fps

Intel® Xeon Phi™
processor cluster
Ambient occlusion plus
shadows

Stop by the Intel SC’16
booth to see it live!

Data courtesy Kitware. Visualization,

Carson Brownlee, Intel @

NASA - Custom OSPRay App

e Rendered on Pleiades
supercomputer
attached Vis wall
cluster

dataset: parachute; simulation: Dr M. Barad, NASA Ames; visualization: Tim Sandstrom,
NASA Ames

ﬂ

Stephen Hawking Centre for Theoretical Cosmology -
ParaView / VTK with OSPRay

* 600 GB Memory
Footprint

« 36 TB Simulation Data
Set

e 4 |Intel® Xeon Phi™
7230 Processors

e 1 Intel® Xeon® E5 v4
Dual Socket node

 |ntel® Omni-Path
Fabric

° — 10 f S Gravational Waves : GR-Chombo AMR Data, Stephen Hawking CTC, UCambridge; Queens
p College, London; visualization, Carson Brownlee, Intel)

ﬂ

Stephen Hawking Centre for Theoretical Cosmology -
‘Walls’ in situ with OSPRay Rendering

e 10 TB Memory Footprint

« SGI UV-300 16TB SMP

e >1000 Shared memory Intel®
Xeon® E5 v3 processors

e ~15 fps

« Domain Wall formation in the
universe from Big Bang to today
(13.8 billion years)

Simulation code by Shellard et al, Visualizaiton by
Johannes Gunther (Intel)

ﬂ

Delivering High
Performance CPU
Libraries

Exploiting Parallelism

l Performance is a big driver for HPC as it
guides...

U ...hardware procurement decisions,

U ...software infrastructure and design
decisions,

0 ...resulting in scientific discoveries!

Exploiting Parallelism

0l Achieving great performance can be
difficult, but the formula is surprisingly
consistent

U Parallelism, parallelism, and more

Exploiting Parallelism - Methods

l Parallelism is NOT the same as concurrency

I Composable constructs, both are useful for getting good
performance

Exploiting Parallelism - Methods

I Processor clock frequencies and power requirements have led HPC
hardware to scale up with parallel execution

Exploiting Parallelism - Methods

1 3 major methods of scaling computation:
0 Vector instructions (ex: AVX®, AVX2®, AVX512®)
U Multicore (ex: Intel Thread Building Blocks®, libiomp, Cilk+)
l Multi Node (ex: Intel MPI®)

Motivation- “Unlocking” FLOPS for
Performance!
72-core KNL Scaling Potential

4608
5000 X

4500

4000
3500
3000
2500
2000
1500

1000 288
X

500

0]

Vector Thread Vector x Thread

B 72-core KNL Scaling Potential

Exploiting Parallelism - Multicore

l Multicore CPUs have been ubiquitous for nearly 2 decades!

I In that time, a lot of work has been done to make multicore
programming easier

- Compiler extensions, tasking libraries, new languages, etc...

Exploiting Parallelism - Multicore

I 2 ways to use more than one core

U Multiprocessing (less effective, legacy programming model)

U Multithreading (more effective, modern programming model)

Multithreading - Programming Models

1 Easy to be overwhelmed by various parallel programming models

Multithreading - Programming Models

1 Easy to be overwhelmed by various parallel programming models

U Plain threads X
(not flexible, difficult to port)

Multithreading - Programming Models

1 Easy to be overwhelmed by various parallel programming models

0 Futures, async(), and callbacks X

- Dbetter for concurrency than parallelism

Multithreading - Programming Models

1 Easy to be overwhelmed by various parallel programming models

U Structured parallelism + generic parallel algorithms v
- Common in HPC, can reuse existing expertise

- Easier to keep code portable

Multithreading - Programming Models

0 Structured parallelism comes in two flavors:

] Compiler directives: void foo(float *a, float *b, float *c) {
#fpragma omp parallel for

for (int i = 0; i < ARRAY SIZE; ++i) {
c[i] = al[i] + b[1i];
}
}

0 Tasking libraries:
volid foo(float *a, float *b, float *c) {
tbb::parallel_for (ARRAY_SIZE, [&] (int 1) {
c[i1] = al[i] + b[i];
DN

}

Multithreading - Programming Models

0 Structured parallelism comes in two flavors:

I Compiler directives:
#fpragma omp parallel for

0 Tasking libraries:

tbb::parallel_for

Multithreading - “Fork-Join” Parallelism

Parallel Task | Parallel Task Il Parallel Task Il

e

Master Thread
Parallel Task | Parallel Task Il Parallel Task llI
Master Thread . A
\ .-'JII 5 (.-' -7 B -_:"'\. \ //5 ;\\
- < e S |

Multithreading - Tasking Systems

I Thread: a unique stack of execution which may run in parallel

0 Task: a unit of work (typically a function) to be run on a thread

Tasks are scheduled on a pool of threads to optimize machine
utilization

Multithreading - Tasking Systems

Compller Composabl Language Vectorizati

C, C++,
el Fortran
Cilk+ v v C, C++ X v

TBB X v C++ v X X *

Multithreading - Tasking Systems

I Thread: a unique stack of execution which may run in parallel
0 Task: a unit of work (typically a function) to be run on a thread

Tasks are scheduled on a pool of threads to optimize machine
utilizatior

_/
N\
I\

Multithreading - Tasking Systems

I Thread: a unique stack of execution which may run in parallel
0 Task: a unit of work (typically a function) to be run on a thread

Tasks are scheduled on a pool of threads to optimize machine

utiliza*ior
_/ Task
/U Stealin

g!

A B R R R B B B &

Multithreading - Abstracting “parallel for()”

for (int 1 = 0; i1 < SIZE; ++1i)
computelIteration(1i);

Multithreading - Abstracting “parallel for()”

for (int 1 = 0; i1 < SIZE; ++1i)
computelIteration(1i);

OpenMP

#pragma omp parallel for
for (int 1 = 0; 1 < SIZE; ++1i)
computelteration(i);

Multithreading - Abstracting “parallel for()”

for (int 1 = 0; i1 < SIZE; ++1i)
computelIteration(1i);

...to get default
behavior like Cilk+

OpenMP / and TBB

#pragma omp parallel for schedule (dynamic)

for (int 1 = 0; 1 < SIZE; ++1i)
computelteration(i);

Multithreading - Abstracting “parallel for()”

for (int 1 = 0; i1 < SIZE; ++1i)
computelIteration(1i);

cilk for (int i = 0; 1 < SIZE; ++1i)
computelteration(i);

Multithreading - Abstracting “parallel for()”

for (int 1 = 0; i1 < SIZE; ++1i)
computelIteration(1i);

TBB

tbb: :parallel for (0, SIZE, [] (int 1) {

computeIteration(i);

}

Multithreading - Abstracting “parallel for()”

template <typename TASK T>
inline void parallel_ for (int nTasks, TASK T&& fcn)

{

}

Multithreading - Abstracting “parallel for()”

template <typename TASK T>
inline void parallel for (int nTasks, TASK T&& fcn)

{

}

1 Templating over TASK T just means it can be...
0 ... a C-style function

0 ... a C++ class which implements ‘operator()’

I ...a C++11 lambda function

Multithreading - Abstracting “parallel for()”

template <typename TASK T>
inline void parallel for (int nTasks, TASK T&& fcn)

{

}
I Templating over TASK_T just means it can be..More info on my

0 ... a C-style function blog:
0 ... ++ cl hich impl ts : :
a C class which implements Operator<http://j6ffamStUtZ.IO

I ...a C++11 lambda function

e

Multithreading - Using “parallel for()”

Multithreading - Using “parallel for()”

I Each frame rendered as a
collection of square tiles

Multithreading - Using “parallel for()”

l Each tile can be further
subdivided into “packets”
of pixels

Multithreading - Using “parallel for()”

I Nesting parallel for() key
to performance

I Lots of tasks make it
easier to balance work

Multithreading - Using “parallel for()”

void renderFrame (Renderer* r, FrameBuffer* f£fb)
{
parallel_ for (fb->numTiles (), [&] (int tileID) {
Tile tile;
setupTile(tile, tilelD);
parallel_ for(tile.numJdobs (), [&] (int jobID) {
renderer—>renderTile(tile, joblID);
})
fb->write (tile);
})

Multithreading - Using “parallel for()”

void renderFrame (Renderer* r, FrameBuffer* f£fb)
{
parallel for (fb->numTiles (), [&] (int tileID) {
Tile tile;
setupTile(tile, tileID); For each tile in
parallel for(tile.numJobs(), [
renderer—->renderTile (tile, jfmnnebuﬁér_.
})
fb->write (tile);
})

Multithreading - Using “parallel for()”

void renderFrame (Renderer* r, FrameBuffer* f£fb)
{
parallel_ for (fb->numTiles (), [&] (int tileID) {
Tile tile;
setupTile(tile, tileID); __create a Tile
parallel for(tile.numJdobs (), [RYRiRSs:Te%
renderer—>renderTile (tile, JEYYsRIaHarIIPAz
1) '
fb->write(tile);
1)

Multithreading - Using “parallel for()”

void renderFrame (Renderer* r, FRERgale=If-Y-1da
{ subsection of
parallel for (fb->numTiles (), [WaElRdll=Rls {

Tile tile;
setupTile(tile, tilelD);

parallel for(tile.numJdobs (), [&] (int jobID) {
renderer->renderTile (tile, jobID);

})
fb->write (tile);

})

Multithreading - Using “parallel for()”

void renderFrame (Renderer* r, FrameBuffer* f£fb)
{
parallel_ for (fb->numTiles (), [&] (int tileID) {
Tile tile;
setupTile(tile, tilelD);
parallel_ for(tile.numJdobs (), [&] (int jobID) {
renderer—->renderTile (t 101 :
}) ; .finally write

fb->write (tile) ; the tile back

}) ; Into the

Multithreading - Abstracting “parallel for()”

SciVis - Parallel Tiles (1024x768)
60

50

40 mTBEB

m Cilk+

30 OpenMP

FPS

20

10

Min

Multithreading - Abstracting “parallel for()”

SciVis - Parallel Tiles w/ Nesting (1024x768)

60

50

40 mTBB

m Cilk+

& 30 OpenMP
L.

20

10

Min

Multithreading - Tasking Systems

Compller Composabl Language Vectorizati

C, C++,
el Fortran
Cilk+ v v C, C++ X v

TBB X v C++ v X X *

Vectorization

I “Vectorized” code is code which uses SIMD instructions

U Single Instruction Multiple Data

Scalar Vector

)
—_—
I
Cl C2 C3 C4

Al A2 A3 A4

Bl B2 B3 B4

Vectorization

void vector_add(float *a,
float *b,
float *c)

{
for (int 1 = 0; i < SIZE; ++1i)
c[i] = a[1] + b[i];

Vectorization

void vector add(float *a, LOOP:
float *b :
o 1. LOAD ali] [] Ra
{ Hhoat Te) 2. LOAD b[i] [] Rb
for (int i = 0; i < sIzE; ++i) 3. ADD Ra, Rb
c[i] = a[i] + b[1]; RC
} 4. STORE RC

cli]

5.ADD 1, 1]I

Vectorization

vLOOP:
1. LOAD ali]
(2. LOAD bli]
3. ADD Ra, Rb
RC

4. STORE RC

cli]

5.ADD 1, 1 []1

Ra
Rb

ol

<

L1 4, STOREv4 Rvc

* OOP:

**1 LOADV4 ali:i+3]
2. LOADV4 bli:1+3]

s13. ADDv4 Rva, Rvb

cli:i+3]
5. ADD I, 4]

Rva
Rvb
RvC

Vectorization Options - “Autovectorization”

void vector_add(float *a,
float *b,
float *c)

{

for (int 1 = 0; i < SIZE; ++1i)
c[i] = a[1] + b[i];

Vectorization Options - “Autovectorization”

Can’t vectorize because...

* Potential overlapping
input arrays

e If ‘SIZE’ isn’t known at
compile time or isn’t
big enough

 Data alignment
problems

Vectorization - Helping the compiler

0l The biggest issue with getting code to vectorize is using the
language to “rule out” code being incorrect if it is vectorized

I Things that can help narrow possibilities of incorrect code when
vectorized:

 —

constness

—

types which can’t be aliased

—

data alignment directives and declarations

 —

data layout (structures) and access patterns

Vectorization Options - Compiler Directives

void vector_add(float *a,
float *b,
float *c)

{
#pragma omp simd
for (int 1 = 0; i < SIZE; ++1i)
c[i] = a[i] + bI[i];

Vectorization Options - Compiler Directives

void vector_add(float *a,
float *b,

*
float *c) Tells the compiler,

“Ignore many of

{

#pragma omp simd EE—) e things that you
for (int 1 = 0; 1 < SIZE; ++1i) are concerned
c[i] = a[i] + bI[i]; about and just

} vectorize the loop”

Vectorization Options - Compiler Directives

void vector_add(float *a,
float *b,
float *c,
int *cond)

{
#fpragma omp simd
for (int i = 0; i < SIZE; ++i) {
i1f (cond[i])
c[i] = a[i] + b[1i];

Vectorization Options - Compiler Directives

i1f (cond[i])

Vectorization Options - SPMD

void vector add(float *a, float *b,

float *c, int *cond) {
for (int i = 0; i < SIZE / SIMD WIDTH; ++i) {
varying float wva = a[i1:1+SIMD_WIDTH],
varying float vb = b[1:1+SIMD_WIDTH],
varying float wvc = c[1:1+SIMD_WIDTH],

varying float vcond = cond[i:1+SIMD_WIDTH];
if (vcond)
vc = va + vb;

Vectorization Options - SPMD

void vector_add(const wvarying float &a,
const varying float &b,
varying float &c,

const varying int cond)

{
i1f (cond[i])
c = a + b;

Vectorization Options - SPMD

void vector_add(const wvarying float &a,
const varying float &b,
varying float &c,

const wvarying int cond)
{
(1t (eond[i]) Compiler generates
c =a+ b; execution mask to only
} apply operations to

"active” SIMD lanes

Exploiting Parallelism - Resources

I Lots of resources! Books, talks,

tutorials, classes, etc.

CFREILLY"

Threading
Building Blocks

Structured Parallel
Programming

Coprocessor

_ High Performance -

" BI'c LI n

High Performance
Parallelism Pearls

High Performance
Parallelism Pearls

;};‘” e

Exploiting Parallelism - Resources

Some of my favorite talks on parallelism:

I Sean Parent (Adobe) [] https://youtu.be/QIHy8pXbnel

0 James Reinders (Formerly Intel) [] https://youtu.be/JpVZww1lhL4c
1 Hartmut Kaiser (LSU) [] https://youtu.be/4OCUEgSNIAY

0 ...and many more!

Exploiting Parallelism - Resources

| Effective vectorization options:

U ISPC, OpenMP SIMD, Cilk+ extensions, boost.simd (library), ...
1 Effective multithreading options:

0l TBB, Cilk+, OpenMP, Qthreads (SNL), libdispatch, PPL, ...

I “Whole system” scaling libraries (including multi-node scaling)
I HPX, Kokkos, RAJA, Charm++, ...

Exploiting Parallelism - Resources

Learn about each option and pick
| Effective vectorization options: what will work best given your

1 ISPC, OpenMP SIMD, Cilk+ ext €ONstraints

1 Effective multithreading options- Am | writing new code or enhancing

_ an existing implementation?
J TBB, Cilk+, OpenMP, Qthread:_ b4 | care more about very low-level

1 “Whole system” scaling libraries control or productivity?

- How much time do | have to learn
another technology?

- What languages am | comfortable
with?

I HPX, Kokkos, RAJA, Charm++,

Simulation: Jeff Onufer and Tom Pulliam, NASA Ames
Visualization: Tim Sandstrom and Pat Moran, NASA
Ames

THANK YOU!

Q& A?

2017 TAMU Research Computing Week

	Slide 1
	Legal Notices and Disclaimers
	Agenda
	Slide 4
	Growing Challenges in HPC
	The Challenge Moving to ExaScale Ex: Visualization Analysis
	Slide 7
	Slide 8
	Slide 9
	Benefits of SDVis
	Hi-Fidelity Visualization with…
	OpenSWR Software Rasterizer ()
	VTK Benchmark + OpenSWR
	Mesa/OpenSWR Benchmarks
	Slide 15
	Ray Tracing Foundation: Embree Ray Tracing Kernel Library
	Performance: Embree vs. NVIDIA* OptiX*
	Embree Adoption*
	Slide 19
	Slide 20
	Software Defined Visualization (SDVis)
	ParaView v5.x with integrated OSPRay and OpenSWR
	NASA – Custom OSPRay App
	Slide 24
	Slide 25
	Slide 26
	Exploiting Parallelism
	Exploiting Parallelism
	Exploiting Parallelism - Methods
	Exploiting Parallelism - Methods
	Exploiting Parallelism - Methods
	Motivation– “Unlocking” FLOPS for Performance!
	Exploiting Parallelism – Multicore
	Exploiting Parallelism – Multicore
	Multithreading – Programming Models
	Multithreading – Programming Models
	Multithreading – Programming Models
	Multithreading – Programming Models
	Multithreading – Programming Models
	Multithreading – Programming Models
	Multithreading – “Fork-Join” Parallelism
	Multithreading – Tasking Systems
	Multithreading – Tasking Systems
	Multithreading – Tasking Systems
	Multithreading – Tasking Systems
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Using “parallel_for()”
	Multithreading – Using “parallel_for()”
	Multithreading – Using “parallel_for()”
	Multithreading – Using “parallel_for()”
	Multithreading – Using “parallel_for()”
	Multithreading – Using “parallel_for()”
	Multithreading – Using “parallel_for()”
	Multithreading – Using “parallel_for()”
	Multithreading – Using “parallel_for()”
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Abstracting “parallel_for()”
	Multithreading – Tasking Systems
	Vectorization
	Vectorization
	Vectorization
	Vectorization
	Vectorization Options – “Autovectorization”
	Vectorization Options – “Autovectorization”
	Vectorization – Helping the compiler
	Vectorization Options – Compiler Directives
	Vectorization Options – Compiler Directives
	Vectorization Options – Compiler Directives
	Vectorization Options – Compiler Directives
	Vectorization Options – SPMD
	Vectorization Options – SPMD
	Vectorization Options – SPMD
	Exploiting Parallelism - Resources
	Exploiting Parallelism - Resources
	Exploiting Parallelism - Resources
	Exploiting Parallelism - Resources
	THANK YOU! Q & A?
	Slide 85

