Can you simulate the space radiation environment for more accurate ground-based radiobiology outcomes?

Jeff Chancellor

Computational Physics Group Department of Physics & Astronomy, Texas A&M

Me, some disclaimers

- These are my conclusions that are based on a diverse background in science, space vehicle design and spaceflight operations
- 15+ years of nuclear and space physics research
- Space vehicle design and shielding analysis
- Flight Controller in Mission
 Control
- Radiation Mission Manager and operational radiation risk assessment STS-118, STS-120, STS-122, and STS-125 (Hubble).

Take Home Message

- Clever application of well-validated nuclear physics principles can be applied to current accelerator and material technologies to generate the complex space radiation environment
 - Continuous generation of ionizing radiation that matches the LET spectrum, ion species, <u>and</u> dose rate Significantly more accurate approach for ground-based experiments
 - Accelerate our understanding of how space radiation affects mechanical, biological, and human systems.
 - Replicable results at any heavy-ion accelerator.
- Our approach represents the first true instance of a ground-based analog for characterizing the effects of space radiation.

Before We Start This Party...

Emulating the Space Radiation Environment for Materials and Radiobiological Experiments

Jeff Chancellor,^{1,*} Stephen Guetersloh,^{2,†} Keith Cengel,^{3,‡} John Ford,^{2,§} and Helmut G. Katzgraber^{1,4,¶}

¹Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA ²Texas A&M University, Department of Nuclear Engineering, College Station, 77843-4242, USA ³University of Pennsylvania, Perlman School of Medicine, Philidelphia, USA ⁴Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 USA (Dated: February 6, 2017)

- Multi-discipline effort:
 - nuclear, space, health and computational physicist
 - radiation oncologist
 - radiobiologist
- Submitted manuscript to Physical Review Applied
- Available on arXiv.org June 13, 2017
 - physics: applied, condensed matter, materials science, space

Space Radiation - Short Course

- Four types of *direct* radiation, all are direct ionizing radiation
 - Galactic Cosmic Rays (GCR)
 - Solar Protons
 - Solar Particle Events (SPE)
 - Trapped Radiation

Solar Particle Events (SPEs)

- "Sexy" rock-star of space radiation
- Immediate risk to astronaut crews
- Difficult to predict:
 - Occurrence
 - Magnitude
 - Length of event
- Proton energies keV to GeV

• Arrival time can be minutes

Galactic Cosmic Rays (GCR)

- Arch-nemesis of space radiation research
- Energetic, relativistic heavy ions that are very difficult to shield
- Includes all species in the periodic table
- Shielding can make intravehicular (IVA) dose much worse

adapted from Simpson (1983)

Galactic Cosmic Rays (GCR)

Current Space Radiation Studies

Mono-energetic, single ion beam

- biological analog does NOT resemble the physiology of humans
- environmental analog does NOT mimic the multi-ion, multienergy space radiation spectrum.

Space Radiation vs

SCIENTIFIC REPORTS

RESEARCH ARTICLE

COGNITIVE NEUROSCIENCE

What happens to your brain on the way to Mars

Vipan K. Parihar,¹ Barrett Allen,¹ Katherine K. Tran,¹ Trisha G. Macaraeg,¹ Esther M. Chu,¹ Stephanie F. Kwok,¹ Nicole N. Chmielewski,¹ Brianna M. Craver,¹ Janet E. Baulch,¹ Munjal M. Acharya,¹ Francis A. Cucinotta,² Charles L. Limoli¹*

350

400

450

300

2015 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 10.1126/sciadv.1400256

500

Motivation

- Report No. 98 Released in 1998
 - 3% Radiation Exposure Induced Death (REID)

- Commentary No. 23 -Released in 2016
 - 3% REID for cancer... should be used for longerterm missions

Hypothesis:

- I GeV ⁵⁶Fe particle beam can be selectively degraded to closely resemble the IVA LET spectrum measured on previous spaceflights.
- Moderator block can be designed to preferentially select desired energy loss and spallation processes
- Resulting in a complex mixed field of particle nuclei with different atomic number Z<Z \leq 26 and LETs \leq 500keV/ μ m.

Moderator Block Concept

Moderator Block Concept

Assumptions Made

- The interaction of the highly-charged heavy ion with the atomic structure of a material results in one of two outcomes:
 - Energy loss to the medium described by stopping power equation:

$$\frac{dE}{dx} = \frac{4\pi e^4 Z_1 Z_2}{m_e \beta^2} \left[ln \left(\frac{2m_e v^2}{I} \right) - ln(1-\beta^2) - \beta^2 - \frac{C}{Z_2} - \frac{\delta}{2} \right]$$

Ahlen (1980) - Bohr (1913), Bethe (1930), Fermi (1940), Fano(1963)

• Generation of smaller progeny nuclei through nuclear spallation.

$$\sigma_{cc} \approx \pi r_o^2 \left[(A_p)^{1/3} + (A_t)^{1/3} + \gamma (A_p^{-1}, A_t^{-1}, E) \right]^2$$

Bradt (1945), Wilson (1986)

Assumptions Made

- All radiation is unique, qualifying biological impact is heavily dependent on the ion species and energy.
 - The Linear Energy Transfer (LET) of a charged particle provides scaling for determination of the effective dose.
 - The LET provides a pseudo-normalization that strips the identification of radiation to a quantifiable number.
 - The stopping power is equivalent to the energy loss per unit path length of the primary ion, i.e., the LET,

Methods

- Three initial test cases:
 - Shuttle-MIR
 - International Space Station
 - Orion EFT-1 test flight

- 3D Monte Carlo
- I GeV ⁵⁶Fe primary beam
- Hydrogen-rich polymers for target block
- Validation with experimental measurements

Methods

- Highly parallelized computational model
- For each test case:
 - le⁶ samples
 - 5000 cores typically used
 - total computation time ~135,000 cpu hours
 - 2.5 TB of data generated
- Our approach would not be possible without multi cpu, high performance computers.

Test Case I: Shuttle- Mir

Test Case 2: International Space Station (ISS)

Test Case 3: EFT-1 (NASA Test Flight)

Proof is in the Pudding: Validation

Proof is in the Pudding: Validation

Single Ion Target Blocks

Proof is in the Pudding: Validation

Compound Target Blocks

4.2 g/cm² Polyethylene

Take Home Message

Yes

• Can you simulate the space radiation environment for more accurate ground-based radiobiology outcomes?

Thank You

jeff@chancellor.space

or <u>jchancellor@tamu.edu</u>

BACKUP SLIDES

Shielding Strategies

Terrestrial Versus Space Radiation

- Total body exposure vs. single organ instigates different pathogenesis
- Multi-energy, multi-ion spectrum
- Healthy vs non-healthy tissue and organ exposures

