Optimizing and Accelerating MATLAB Code

Tom McHugh Account Manager
Saket Kharsikar Application Engineer

© 2017 The MathWorks, Inc.
Agenda

- Leveraging the power of vector and matrix operations
- Addressing bottlenecks
- Generating and incorporating C code
- Utilizing additional processing power
- Summary
Example: Block Processing Images

- Evaluate function at grid points
- Reevaluate function over larger blocks
- Compare the results
- Evaluate code performance
Summary of Example

- Used built-in timing functions
  ```matlab
  >> tic
  >> toc
  ```
- Used MATLAB Code Analyzer to find suboptimal code
- Preallocated arrays
- Vectorized code
Effect of Not Preallocating Memory

```matlab
>> x = 4
>> x(2) = 7
>> x(3) = 12
```

Resizing Arrays is Expensive
Benefit of Preallocation

```matlab
>> x = zeros(3,1)
>> x(1) = 4
>> x(2) = 7
>> x(3) = 12
```
MATLAB Underlying Technologies

- Commercial libraries
 - BLAS: Basic Linear Algebra Subroutines (multithreaded)
 - LAPACK: Linear Algebra Package
 - etc.

- JIT/Accelerator
 - Improves looping
 - Generates on-the-fly multithreaded code
 - Continually improving

BLAS and LAPACK require contiguous arrays
Other Best Practices

- Minimize dynamically changing path

  ```
  >> addpath(...)  
  >> fullfile(...)  
  ```

- Use the functional load syntax

  ```
  >> x = load('myvars.mat')  
  x =  
  a: 5  
  b: 'hello'  
  ```

- Minimize changing variable class

  ```
  >> x = 1;  
  >> xnew = 'hello';  
  ```
Agenda

- Leveraging the power of vector and matrix operations
 - Addressing bottlenecks
- Generating and incorporating C code
- Utilizing additional processing power
- Summary
Example: Fitting Data

- Load data from multiple files
- Extract a specific test
- Fit a spline to the data
- Write results to Microsoft Excel
Summary of Example

- Used profiler to analyze code
- Targeted significant bottlenecks
- Reduced file I/O
- Reused figure
Interpreting Profiler Results

- **Focus on top bottleneck**
 - Total number of function calls
 - Time per function call

- **Functions**
 - All function calls have overhead
 - MATLAB functions often take vectors or matrices as inputs
 - Find the right function – performance may vary
 - Search MATLAB functions (e.g., `textscan` vs. `textread`)
 - Write a custom function (specific/dedicated functions may be faster)
 - Many shipping functions have viewable source code
Classes of Bottlenecks

- **File I/O**
 - Disk is slow compared to RAM
 - When possible, use `load` and `save` commands

- **Displaying output**
 - Creating new figures is expensive
 - Writing to command window is slow

- **Computationally intensive**
 - Use what you’ve learned today
 - Trade-off modularization, readability and performance
 - Integrate other languages or additional hardware
 - e.g. MEX, GPUs, FPGAs, clusters, etc.
Steps for Improving Performance

- First focus on getting your code working

- Then speed up the code within core MATLAB

- Consider other languages (i.e. C MEX files) and additional processing power
Agenda

- Leveraging the power of vector and matrix operations
- Addressing bottlenecks
 - Generating and incorporating C code
- Utilizing additional processing power
- Summary
Why engineers and scientists translate MATLAB to C today?

- **Integrate** MATLAB algorithms w/ existing C environment using source code and static/dynamic libraries
- **Prototype** MATLAB algorithms on desktops as standalone executables
- **Accelerate** user-written MATLAB algorithms
- **Implement** C code on processors or hand-off to software engineers
Automatic Translation of MATLAB to C

With MATLAB Coder, design engineers can

• Maintain one design in MATLAB
• Design faster and get to C quickly
• Test more systematically and frequently
• Spend more time improving algorithms in MATLAB
Acceleration using MEX

- Speed-up factor will vary

- When you may see a speedup
 - Often for Communications and Signal Processing
 - Always for Fixed-point
 - Likely for loops with states or when vectorization isn’t possible

- When you may not see a speedup
 - MATLAB implicitly multithreads computation
 - Built-functions call IPP or BLAS libraries
Agenda

- Leveraging the power of vector and matrix operations
- Addressing bottlenecks
- Generating and incorporating C code
 - Utilizing additional processing power
- Summary
Going Beyond Serial MATLAB Applications

MATLAB Desktop (Client)

Worker

Worker

Worker

Worker

Worker

Worker
Parallel Computing Toolbox for the Desktop

- Speed up parallel applications
- Take advantage of GPUs
- Prototype code for your cluster
Scale Up to Clusters and Clouds
Parallel Computing enables you to …

- **Larger Compute Pool**: Speed up Computations
- **Larger Memory Pool**: Work with Large Data
Programming Parallel Applications

Ease of Use

Greater Control
Programming Parallel Applications (CPU)

- Built-in support with toolboxes
Tools Providing Parallel Computing Support

- Optimization Toolbox
- Global Optimization Toolbox
- Statistics Toolbox
- Signal Processing Toolbox
- Neural Network Toolbox
- Image Processing Toolbox
- …

Directly leverage functions in Parallel Computing Toolbox

www.mathworks.com/builtin-parallel-support
Programming Parallel Applications (CPU)

- Built-in support with toolboxes
- Simple programming constructs: `parfor`, `batch`, `distributed`
Independent Tasks or Iterations

- Ideal problem for parallel computing
- No dependencies or communications between tasks
- Examples: parameter sweeps, Monte Carlo simulations

Example: Parameter Sweep of ODEs
Parallel for-loops

- Parameter sweep of ODE system
 - Damped spring oscillator
 - Sweep through different values of damping and stiffness
 - Record peak value for each simulation

- Convert `for` to `parfor`

- Use pool of MATLAB workers
Programming Parallel Applications (CPU)

- Built-in support with toolboxes
- Simple programming constructs: `parfor`, `batch`, `distributed`
- Advanced programming constructs: `createJob`, `labSend`, `spmd`
Performance Gain with More Hardware

Using More Cores (CPUs)

Using GPUs

Cache

GPU cores

Device Memory
Programming Parallel Applications (GPU)

- Built-in support with toolboxes
- Simple programming constructs: `gpuArray, gather`
- Advanced programming constructs: `arrayfun, spmd`
- Interface for experts: `CUDAKernel, MEX support`

www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu
www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code
Use MATLAB Distributed Computing Server

1. Prototype code
Use MATLAB Distributed Computing Server

1. Prototype code

2. Get access to an enabled cluster
Use MATLAB Distributed Computing Server

1. Prototype code
2. Get access to an enabled cluster
3. Switch cluster profile to run on cluster resources
Take Advantage of Cluster Hardware

- Offload computation:
 - Free up desktop
 - Access better computers

- Scale speed-up:
 - Use more cores
 - Go from hours to minutes

- Scale memory:
 - Utilize distributed arrays
 - Solve larger problems without re-coding algorithms
Offloading Computations

- Send desktop code to cluster resources
 - No parallelism required within code
 - Submit directly from MATLAB

- Leverage supplied infrastructure
 - File transfer / path augmentation
 - Job monitoring
 - Simplified retrieval of results

- Scale offloaded computations
Offload Computations with `batch`

MATLAB Desktop (Client)

Worker

Worker

Worker

Worker

batch(…)

Work

Result
Offload and Scale Computations with `batch`
Distributing Large Data

MATLAB Desktop (Client)

Worker

Worker

Worker

Worker

Remotely Manipulate Array from Client

Distributed Array Lives on the Workers
Distributed Arrays and SPMD

- **Distributed arrays**
 - Hold data remotely on workers running on a cluster
 - Manipulate directly from client MATLAB (desktop)
 - Use MATLAB functions directly on distributed arrays

- **spmd**
 - Execute blocks of code on workers
 - Explicitly communicate between workers with message passing
 - Mix parallel and serial code in same program
TAMU HPRC MATLAB Resources

Why use MATLAB on HPRC clusters?

- Long running Matlab scripts
- Large memory requirements
 - At least 64GB per node, up to 2TB
 - Distribute data over multiple nodes
- Utilizing Matlab parallel toolbox
 - Start up to 28 Matlab workers per node
 - Start Matlab workers on multiple nodes
- Utilizing Matlab GPU capabilities
 - 48 nodes with dual K80 gpus on terra
 - 30 nodes with dual K40 gpus on ada

What HPRC offers

- Latest versions of Matlab
- Matlab Distributed Computing Server (MDCS) license
 - Currently 96 tokens
 - Distribute workers over nodes
- Assistance parallelizing code
- Consulting
- Framework to run parallel code
- HPRC Matlab App
 - Submit Matlab jobs from your own desktop/laptop

Who can use HPRC resources?

- All A&M students/staff/faculty
- Apply for account at: hprc.tamu.edu/accounts/apply/

Who can use HPRC resources?

- All A&M students/staff/faculty
- Apply for account at: hprc.tamu.edu/accounts/apply/

High Performance Research Computing – http://hprc.tamu.edu
Agenda

- Leveraging the power of vector and matrix operations
- Addressing bottlenecks
- Generating and incorporating C code
- Utilizing additional processing power

Summary
Key Takeaways

- Consider performance benefit of vector and matrix operations in MATLAB
- Analyze your code for bottlenecks and address most critical items
- Leverage MATLAB Coder to speed up applications through generated C/C++ code
- Leverage parallel computing toolsto take advantage of additional computing resources