
1© 2017 The MathWorks, Inc.

Optimizing and Accelerating MATLAB Code

Tom McHugh Account Manager

Saket Kharsikar Application Engineer

2

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

3

Example: Block Processing Images

 Evaluate function at grid points

 Reevaluate function

over larger blocks

 Compare the results

 Evaluate code performance

4

Summary of Example

 Used built-in timing functions

>> tic

>> toc

 Used MATLAB Code Analyzer

to find suboptimal code

 Preallocated arrays

 Vectorized code

5

Effect of Not Preallocating Memory

>> x = 4

>> x(2) = 7

>> x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4 4

4

7

4

7

4

7

12

X(3) = 12X(2) = 7

6

Benefit of Preallocation

>> x = zeros(3,1)

>> x(1) = 4

>> x(2) = 7

>> x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

0

0

4

7

0

4

7

12

8

MATLAB Underlying Technologies

 Commercial libraries

– BLAS:Basic Linear Algebra

Subroutines (multithreaded)

– LAPACK: Linear Algebra Package

– etc.

 JIT/Accelerator

– Improves looping

– Generates on-the-fly multithreaded code

– Continually improving

9

Other Best Practices

 Minimize dynamically changing path
>> addpath(…)

>> fullfile(…)

 Use the functional load syntax
>> x = load('myvars.mat')

x =

a: 5

b: 'hello'

 Minimize changing variable class
>> x = 1;

>> xnew = 'hello';

instead of cd(…)

instead of load('myvars.mat')

instead of x = 'hello';

11

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

12

Example: Fitting Data

 Load data from multiple files

 Extract a specific test

 Fit a spline to the data

 Write results to Microsoft Excel

13

Summary of Example

 Used profiler to analyze code

 Targeted significant bottlenecks

 Reduced file I/O

 Reused figure

14

Interpreting Profiler Results

 Focus on top bottleneck

– Total number of function calls

– Time per function call

 Functions

– All function calls have overhead

– MATLAB functions often take vectors or matrices as inputs

– Find the right function – performance may vary

 Search MATLAB functions (e.g., textscan vs. textread)

 Write a custom function (specific/dedicated functions may be faster)

 Many shipping functions have viewable source code

15

Classes of Bottlenecks

 File I/O

– Disk is slow compared to RAM

– When possible, use load and save commands

 Displaying output

– Creating new figures is expensive

– Writing to command window is slow

 Computationally intensive

– Use what you’ve learned today

– Trade-off modularization, readability and performance

– Integrate other languages or additional hardware

 e.g. MEX, GPUs, FPGAs, clusters, etc.

16

Steps for Improving Performance

 First focus on getting your code working

 Then speed up the code within core MATLAB

 Consider other languages (i.e. C MEX files) and additional processing

power

17

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

18

Why engineers and scientists translate MATLAB to C today?

Integrate MATLAB algorithms w/ existing C environment

using source code and static/dynamic libraries

Prototype MATLAB algorithms on desktops as

standalone executables

Accelerate user-written MATLAB algorithms

Implement C code on processors or hand-off to

software engineers

19

Algorithm Design and

Code Generation in

MATLAB

With MATLAB Coder, design engineers can

• Maintain one design in MATLAB

• Design faster and get to C quickly

• Test more systematically and frequently

• Spend more time improving algorithms in MATLAB

Automatic Translation of MATLAB to C

verify /accelerate

ite
ra
te

20

Acceleration using MEX

 Speed-up factor will vary

 When you may see a speedup

– Often for Communications and Signal Processing

– Always for Fixed-point

– Likely for loops with states or when vectorization isn’t possible

 When you may not see a speedup

– MATLAB implicitly multithreads computation

– Built-functions call IPP or BLAS libraries

21

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

22

Going Beyond Serial MATLAB Applications

MATLAB

Desktop (Client)

Worker

Worker

Worker

Worker

Worker

Worker

23

Parallel Computing Toolbox for the Desktop

 Speed up parallel applications

 Take advantage of GPUs

 Prototype code for your cluster

MATLAB

Desktop (Client)

Local

Desktop Computer

24

Scale Up to Clusters and Clouds

MATLAB

Desktop (Client)

Local

Desktop Computer

Cluster

Computer Cluster

Scheduler

25

Parallel Computing enables you to …

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Speed up Computations Work with Large Data

26

Programming Parallel Applications

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

27

Programming Parallel Applications (CPU)

 Built-in support with toolboxes
E

a
s

e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

28

Tools Providing Parallel Computing Support

 Optimization Toolbox

 Global Optimization Toolbox

 Statistics Toolbox

 Signal Processing Toolbox

 Neural Network Toolbox

 Image Processing Toolbox

 …
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

BLOCKSETS

Directly leverage functions in Parallel Computing Toolbox

www.mathworks.com/builtin-parallel-support

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/builtin-parallel-support

29

Programming Parallel Applications (CPU)

 Built-in support with toolboxes

 Simple programming constructs:

parfor, batch, distributed

E
a

s
e

 o
f

U
s

e
G

re
a

te
r C

o
n

tro
l

30

 Ideal problem for parallel computing

 No dependencies or communications between tasks

 Examples: parameter sweeps, Monte Carlo simulations

Independent Tasks or Iterations

TimeTime

blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

31

Example: Parameter Sweep of ODEs
Parallel for-loops

 Parameter sweep of ODE system

– Damped spring oscillator

– Sweep through different values

of damping and stiffness

– Record peak value for each

simulation

 Convert for to parfor

 Use pool of MATLAB workers

 0
,...2,1,...2,1

5

 xkxbxm

32

Programming Parallel Applications (CPU)

 Built-in support with toolboxes

 Simple programming constructs:
parfor, batch, distributed

 Advanced programming constructs:
createJob, labSend, spmd

E
a

s
e

 o
f

U
s

e
G

re
a

te
r C

o
n

tro
l

33

Core 1

Core 3 Core 4

Core 2

Cache

Performance Gain with More Hardware

Using More Cores (CPUs) Using GPUs

Device Memory

GPU cores

Device Memory

34

Programming Parallel Applications (GPU)

 Built-in support with toolboxes

 Simple programming constructs:
gpuArray, gather

 Advanced programming constructs:
arrayfun, spmd

 Interface for experts:

CUDAKernel, MEX support

E
a

s
e

 o
f

U
s

e
G

re
a

te
r C

o
n

tro
l

www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu

www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code

http://www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu
http://www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code.html

35

Use MATLAB Distributed Computing Server

MATLAB

Desktop (Client)

Local

Desktop Computer

Profile
(Local)

1. Prototype code

MATLAB

code

36

Use MATLAB Distributed Computing Server

Cluster

Computer Cluster

Scheduler

Profile
(Cluster)

1. Prototype code

2. Get access to an

enabled cluster

37

Use MATLAB Distributed Computing Server

MATLAB

Desktop (Client)

Local

Desktop Computer

Cluster

Computer Cluster

Scheduler

Profile
(Local)

Profile
(Cluster)

MATLAB

code
MATLAB

code

1. Prototype code

2. Get access to an

enabled cluster

3. Switch cluster

profile to run on

cluster resources

38

 Offload computation:

– Free up desktop

– Access better computers

 Scale speed-up:

– Use more cores

– Go from hours to minutes

 Scale memory:

– Utilize distributed arrays

– Solve larger problems without re-coding algorithms

Cluster

Computer Cluster

Scheduler

Take Advantage of Cluster Hardware

MATLAB

Desktop (Client)

39

Offloading Computations

 Send desktop code to cluster resources

– No parallelism required within code

– Submit directly from MATLAB

 Leverage supplied infrastructure

– File transfer / path augmentation

– Job monitoring

– Simplified retrieval of results

 Scale offloaded computations

MATLAB

code

Cluster

Computer Cluster

Scheduler

40

MATLAB

Desktop (Client)

Offload Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…)

41

MATLAB

Desktop (Client)

Offload and Scale Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…,'Pool',…)

42

Distributed Array

Lives on the Workers

Remotely Manipulate Array

from Client

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Distributing Large Data

Worker

Worker

Worker

Worker

MATLAB

Desktop (Client)

43

Distributed Arrays and SPMD

 Distributed arrays

– Hold data remotely on workers running on a cluster

– Manipulate directly from client MATLAB (desktop)

– Use MATLAB functions directly on distributed arrays
 www.mathworks.com/help/distcomp/using-matlab-functions-on-codistributed-arrays

 spmd

– Execute blocks of code on workers

– Explicitly communicate between workers with message passing

– Mix parallel and serial code in same program

http://www.mathworks.com/help/distcomp/using-matlab-functions-on-codistributed-arrays.html

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

TAMU HPRC MATLAB Resources

 Latest versions of Matlab
 Matlab Distributed Computing

Server (MDCS) license
 Currently 96 tokens
 Distribute workers over nodes

 Assistance parallelizing code
 Consulting
 Framework to run parallel code
 HPRC Matlab App

 Submit Matlab jobs from your own
desktop/laptop

What HPRC offers

 Long running Matlab scripts
 Large memory requirements

 At least 64GB per node, up to 2TB
 Distribute data over multiple nodes

 Utilizing Matlab parallel toolbox
 Start up to 28 Matlab workers per

node
 Start Matlab workers on multiple

nodes

 Utilizing Matlab GPU capabilities
 48 nodes with dual K80 gpus on

terra
 30 nodes with dual K40 gpus on

ada

Why use MATLAB on HPRC clusters?

 All A&M students/staff/faculty
 Apply for account at:

hprc.tamu.edu/accounts/apply/

Who can use HPRC resources?

45

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

46

Key Takeaways

 Consider performance benefit of vector and matrix

operations in MATLAB

 Analyze your code for bottlenecks and address most

critical items

 Leverage MATLAB Coder to speed up applications

through generated C/C++ code

 Leverage parallel computing toolsto take advantage of

additional computing resources

47© 2017 The MathWorks, Inc.

© 2016 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks

for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

http://www.mathworks.com/trademarks

