
Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Intermediate CUDA®
Programming

Jian Tao
jtao@tamu.edu

Fall 2017 HPRC Short Course
10/31/2017

1

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Introduction to CUDA Programming
https://hprc.tamu.edu/training/intro_cuda.html

2

Bring-Your-Own-Code Workshop
https://coehpc.engr.tamu.edu/byoc/
Offered regularly

Relevant Short Courses and
Workshops

https://hprc.tamu.edu/training/intro_cuda.html
https://coehpc.engr.tamu.edu/byoc/

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

CUDA Programming
Abstractions

3

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Key Programming Abstractions

4

Three key abstractions that are exposed to
CUDA programmers as a minimal set of
language extensions:
• a hierarchy of thread groups
• shared memories
• barrier synchronization

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Glossary

5

• Thread is an abstract entity that represents the execution of
the kernel, which is a small program or a function.

• Grid is a collection of Threads. Threads in a Grid execute a
Kernel Function and are divided into Thread Blocks.

• Thread Block is a group of threads which execute on the
same multiprocessor (SMX). Threads within a Thread Block
have access to shared memory and can be explicitly
synchronized.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

CUDA Kernels
• CUDA kernels are C functions that, when called, are executed

N times in parallel by N different CUDA threads.

• A kernel is defined with __global__ declaration specifier.

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Kernel Invocation
● The number of CUDA threads that execute a kernel is specified

using a new <<<...>>>execution configuration syntax.
● Each thread that executes the kernel is given a unique thread ID

that is accessible within the kernel through the built-in
3-component vector threadIdx.

// Kernel Invocation with N threads
VecAdd<<<1, N>>>(A, B, C);

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Example 1 - Kernel Definition

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
 int i = threadIdx.x;
 int j = threadIdx.y;
 C[i][j] = A[i][j] + B[i][j];
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Example 1 - Kernel Invocation

// Kernel invocation
int main()
{
 ...
// Call kernel with one block of N * N * 1 threads
 int numBlocks = 1;
 dim3 threadsPerBlock(N, N);
 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
 ...
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Hierarchy of Threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Thread Hierarchy - I
• 1D, 2D, or 3D threads can form 1D,

2D, or 3D thread blocks.

• 1D, 2D, or 3D blocks can form 1D,
2D, or 3D grid of thread blocks

• The number of threads per block
and the number of blocks per grid
are specified in the <<<...>>>
syntax.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Thread Hierarchy - II
• Each block within the grid can be

identified by an index accessible within
the kernel through the built-in
3-component vector blockIdx.

• The dimension of the thread block is
accessible within the kernel through
the built-in 3-component vector
blockDim.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

● 1D
thread ID is the same as the index of a thread

● 2D
for a two-dimensional block of size (blockDim.x, blockDim.y),
the thread ID of a thread of index (x, y) is (x + y * blockDim.x)

● 3D
for a three-dimensional block of size (blockDim.x, blockDim.y,
blockDim.z), the thread ID of a thread of index (x, y, z) is
(x + y * blockDim.x + z * blockDim.x * blockDim.y)

Thread Index and Thread ID

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

• With blockDim.x threads/block, the thread is given by:
int index = threadIdx.x + blockIdx.x * blockDim.x;

• Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Indexing Arrays: Example
• Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * blockDim.x;
 = 5 + 2 * 8
 = 21

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

blockDim.x = 8

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Example 2 - Kernel Definition

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 if (i < N && j < N)
 C[i][j] = A[i][j] + B[i][j];
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Example 2 - Kernel Invocation
// Kernel invocation
int main()
{
 ...
// run kernel with multiple blocks of 16*16*1 threads
 dim3 threadsPerBlock(16, 16);
 dim3 numBlocks(N / threadsPerBlock.x, N /
threadsPerBlock.y);
 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
 ...
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Handling Arbitrary Vector Sizes

Update the kernel launch: M = blockDim.x
 VecAdd<<<(N + M-1) / M, M>>>(A, B, C, N);

● Typical problems are not friendly multiples of
blockDim.x

● Avoid accessing beyond the end of the arrays:

__global__ void VecAdd(int *A, int *B, int *C, int n) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 if (index < n)
 C[index] = A[index] + B[index];
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Why Bother with Threads?
• Threads seem unnecessary

– They add a level of complexity
– What do we gain?

• Threads within a block can cooperate by sharing
data through some shared memory

• by synchronizing their execution to coordinate
memory accesses with __syncthreads()

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Memory Hierarchy

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Hierarchical Memory Structure
• Each thread has access to registers

and private local memory.

• Each thread block has shared
memory visible to all threads of the
block and with the same lifetime as
the block.

• All threads have access to global
memory.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Memory Spaces
• Register, local, shared, global, constant (read only),

and texture (read only) memory are the memory
spaces available.

• Only register and shared memory reside on GPU.

• The global, constant, and texture memory spaces
are cached and persistent across kernel launches by
the same application.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Memory: Scope and Performance
• Data in register memory is visible only to the thread and lasts only for the lifetime

of that thread.

• Local memory has the same scope rules as register memory, but performs slower.

• Data stored in shared memory is visible to all threads within that block and lasts
for the duration of the block.

• Data stored in global memory is visible to all threads within the application
(including the host), and lasts for the duration of the host allocation.

• Constant memory is used for data that will not change over the course of a kernel
execution and is read only.

• Texture memory is another variety of read-only memory on the device.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Using Global Memory
• Linear memory is typically allocated using
cudaMalloc() and freed using cudaFree() and
data transfer between host and device is done using
cudaMemcpy().

• Linear memory can also be allocated through
cudaMallocPitch() and cudaMalloc3D() and
transferred using cudaMemcpy2D() and
cudaMemcpy3D() with better memory alignment.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Using Shared Memory
• Much faster than global memory.

• Allocated using the __shared__ memory space
specifier.

 __shared__ float A[BLOCK_SIZE][BLOCK_SIZE];

• Shared memory shall be used as a cache for global
memory to exploit locality of the code.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Example 3 - Matrix Multiplication w/o SM

Each thread computes one element of C
by accumulating results into Cvalue.

__global__ void MatMulKernel(Matrix A, Matrix B,
 Matrix C)
{
 float Cvalue = 0;
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 for (int e = 0; e < A.width; ++e)
 Cvalue += A.elements[row * A.width + e] *
 B.elements[e * B.width + col];
 C.elements[row * C.width + col] = Cvalue;
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Example 4 - Matrix Multiplication with SM

Each thread computes one element of
Csub // by accumulating results into
Cvalue

...
for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
 Matrix Asub = GetSubMatrix(A, blockRow, m);
 Matrix Bsub = GetSubMatrix(B, m, blockCol);
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
 As[row][col] = GetElement(Asub, row, col);
 Bs[row][col] = GetElement(Bsub, row, col);
 __syncthreads();
 for (int e = 0; e < BLOCK_SIZE; ++e)

 Cvalue += As[row][e] * Bs[e][col];

 __syncthreads();

 }

...

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Review - 1

• Launching parallel kernels
– Launch N copies of add() with add<<<N/M,M>>>(…);

– Use blockIdx.x to access block index

– Use threadIdx.x to access thread index within block

• Allocate elements to threads:

 int index = threadIdx.x + blockIdx.x * blockDim.x;

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

• Launching parallel threads
– Launch N blocks with blockDim.x threads per block with

kernel<<<N, blockDim.x>>>(…);

– Use blockIdx.x to access block index within grid

– Use threadIdx.x to access thread index within block

• Allocate elements to threads:
int index = threadIdx.x + blockIdx.x * blockDim.x;

Review - 2

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

• Use __shared__ to declare a variable/array in
shared memory
– Data is shared between threads in a block

– Not visible to threads in other blocks

• Use __syncthreads() as a barrier
– Use to prevent data hazards

Review - 3

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Unified Memory Programming

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Software: CUDA 6.0 in 2014 Hardware: Pascal GPU in 2016

Unified Memory

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Unified Memory

• A managed memory space where all
processors see a single coherent memory
image with a common address space.

• Eliminates the need for cudaMemcpy().
• Enables simpler code.
• Equipped with hardware support since Pascal.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Example 5 - Vector Addition w/o UM
__global__ void VecAdd(int *ret, int a, int b) {
 ret[threadIdx.x] = a + b + threadIdx.x;
}
int main() {
 int *ret;
 cudaMalloc(&ret, 1000 * sizeof(int));
 VecAdd<<< 1, 1000 >>>(ret, 10, 100);
 int *host_ret = (int *)malloc(1000 * sizeof(int));
 cudaMemcpy(host_ret, ret, 1000 * sizeof(int), cudaMemcpyDefault);
 for(int i=0; i<1000; i++)
 printf("%d: A+B = %d\n", i, host_ret[i]);
 free(host_ret);
 cudaFree(ret);
 return 0;
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Example 6 - Vector Addition with UM
__global__ void VecAdd(int *ret, int a, int b) {

 ret[threadIdx.x] = a + b + threadIdx.x;

}

int main() {

 int *ret;

 cudaMallocManaged(&ret, 1000 * sizeof(int));

 VecAdd<<< 1, 1000 >>>(ret, 10, 100);

 cudaDeviceSynchronize();

 for(int i=0; i<1000; i++)

 printf("%d: A+B = %d\n", i, ret[i]);

 cudaFree(ret);

 return 0;

}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Example 7 - Vector Addition with
Managed Global Memory

__device__ __managed__ int ret[1000];

__global__ void VecAdd(int *ret, int a, int b) {

 ret[threadIdx.x] = a + b + threadIdx.x;

}

int main() {

 VecAdd<<< 1, 1000 >>>(ret, 10, 100);

 cudaDeviceSynchronize();

 for(int i=0; i<1000; i++)

 printf("%d: A+B = %d\n", i, ret[i]);

 return 0;

}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Managing Device

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Coordinating Host & Device
• Kernel launches are asynchronous

– Control returns to the CPU immediately

• CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete. Copy
begins when all preceding CUDA calls have
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have
completed

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Reporting Errors
• All CUDA API calls return an error code (cudaError_t)

– Error in the API call itself or
– Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:
cudaError_t cudaGetLastError(void)

• Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)
printf("%s\n",cudaGetErrorString(cudaGetLastError())

);

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Device Management
• Application can query and select GPUs

cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *device)
cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple threads can share a device
• A single thread can manage multiple devices
 Select current device: cudaSetDevice(i)

 For peer-to-peer copies: cudaMemcpy(…)

✝ requires OS and device support

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

GPU Computing
Capability

The compute capability of a
device is represented by a version
number that identifies the
features supported by the GPU
hardware and is used by
applications at runtime to
determine which hardware
features and/or instructions are
available on the present GPU.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

More Resources
 You can learn more about CUDA at

– CUDA Programming Guide (docs.nvidia.com/cuda)

– CUDA Zone – tools, training, etc.
(developer.nvidia.com/cuda-zone)

– Download CUDA Toolkit & SDK
(www.nvidia.com/getcuda)

– Nsight IDE (Eclipse or Visual Studio)
(www.nvidia.com/nsight)

http://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/cuda-zone
http://www.nvidia.com/getcuda
http://www.nvidia.com/nsight

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Acknowledgements

43

● Educational materials from NVIDIA via its Academic
Programs.

● Supports from Texas A&M Engineering Experiment
Station (TEES) and High Performance Research
Computing (HPRC).

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Appendix

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

__device__ int getGlobalIdx_1D_1D ()
{
 return blockIdx.x * blockDim.x + threadIdx.x;
}

__device__ int getGlobalIdx_1D_2D ()
{
 return blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x +
 threadIdx.x;
}

__device__ int getGlobalIdx_1D_3D ()
{
 return blockIdx.x * blockDim.x * blockDim.y * blockDim.z
 + threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x +
 threadIdx.x;
}

1D Grid of Blocks in 1D, 2D, and 3D

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

__device__ int getGlobalIdx_2D_1D ()
{
 int blockId = blockIdx.y * gridDim.x + blockIdx.x;
 int threadId = blockId * blockDim.x + threadIdx.x;
 return threadId;
}

__device__ int getGlobalIdx_2D_2D ()
{
 int blockId = blockIdx.x + blockIdx.y * gridDim.x;
 int threadId =
 blockId * (blockDim.x * blockDim.y) + (threadIdx.y * blockDim.x) + threadIdx.x;
 return threadId;
}

__device__ int getGlobalIdx_2D_3D ()
{
 int blockId = blockIdx.x + blockIdx.y * gridDim.x;
 int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)
 + (threadIdx.z * (blockDim.x * blockDim.y))
 + (threadIdx.y * blockDim.x) + threadIdx.x;
 return threadId;
}

2D Grid of Blocks in 1D, 2D, and 3D

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

__device__ int getGlobalIdx_3D_1D ()
{
 int blockId = blockIdx.x
 + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
 int threadId = blockId * blockDim.x + threadIdx.x;
 return threadId;
}

__device__ int getGlobalIdx_3D_2D ()
{
 int blockId = blockIdx.x
 + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
 int threadId = blockId * (blockDim.x * blockDim.y)
 + (threadIdx.y * blockDim.x) + threadIdx.x;
 return threadId;
}

__device__ int getGlobalIdx_3D_3D ()
{
 int blockId = blockIdx.x
 + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
 int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)
 + (threadIdx.z * (blockDim.x * blockDim.y))
 + (threadIdx.y * blockDim.x) + threadIdx.x;
 return threadId;
}

3D Grid of Blocks in 1D, 2D, and 3D

