High Performance Research Computing

A Resource for Research and Discovery

Introduction to the MATLAB Parallel Toolbox Marinus Pennings October 10,2017

Outline

- Multi threading in MATLAB
- Parallel Pools
- parfor
- spmd
- distributed
- GPU computing
- Cluster Profiles
- MATLAB batch command
- Remote job submission

High Performance Research Computing

A Resource for Research and Discovery

Short course home page:

https://hprc.tamu.edu/training/matlab_parallel_toolbox.html

Matlab source codes:

- On the course home page
- On ada: /scratch/training/MATLAB-PCT/matlab.zip
- On terra: /scratch/training/MATLAB-PCT/matlab.zip

Multi threading

computer/node

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

ĀМ

Multi threading

MATLAB automatically executes a large number of operators multi threaded

- Transparent to user
- Array/Matrix operations
- Elementwise operators

>> feature('NumThreads',N);
>> old = maxNumCompThreads(N);

Average Desktop/Laptop has 4 to 8 cores. HPRC cluster terra has 28 cores (20 on ada, some nodes have 40 cores)

computer/node

Parallel Pool parallel pool Main Main worker **MATLAB MATLAB** >> N=3; >> p=parpool(N); CPU CPU

Parallel Pool

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Ă M

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

ĂМ

parfor

1) Main MATLAB sends data and code to workers

2) Workers execute assigned iterations

A M

- Main MATLAB sends data and code to workers
- 2) Workers execute assigned iterations

ĂЙ

3) Workers send results back. Main MATLAB combines results

parfor

- 1) Main MATLAB sends data and code to workers
- 2) Workers execute assigned iterations
- Workers send results back. Main MATLAB combines results
- 4) Main MATLAB gets control back

ĀM

parfor

(continues executing statements after parfor)

(Workers will be idle again, waiting for more work to do)

SPMD block is a construct where all the workers will execute the code in the SPMD block concurrently.

(Workers are idle, waiting for more work to do)

1) Main MATLAB sends code block to workers

ĀМ

spmd
id = labindex;
tot = numlabs;
a=ones(tot)*id
end
a1 = a{1}

1) Main MATLAB sends code block to workers

2) Workers execute code in SPMD block

ĂМ

spmd
id = labindex;
tot = numlabs;
a=ones(tot)*id
end
a1 = a{1}

(Main MATLAB waiting

- 1) Main MATLAB sends code block to workers
- 2) Workers execute code in SPMD block
- 3) Main MATLAB gets control back

Ā M

SPMD Communication

- labSend(var,id) → sends variable "var" to worker "id"
- var=labReceive(id) → receives data from "id" and assigns to "var"
- vf=labSendReceive(it,if,vt) → sends "vt" to "it",receive data from "if" and assign to "vf"

```
spmd
id=labindex; n=numlabs;
if (id == n)
    labSend(1,id);
else if (id == 1)
    id=labReceive(n);
end
```


Distributed Arrays

Conceptually very similar to a regular array.

- Many regular matrix operators available for distributed arrays.
- Elements can be of any type

ĀΜ

- Elements distributed over the workers
- Matlab will automatically use parallel version of operator If operand is distributed variable

>> methods('distributed');

Texas A&M University

High Performance Research Computing – https://hprc.tamu.edu

Distributed Arrays

Conceptually very similar to a regular array.

- Many regular matrix operators available for distributed arrays.
- Elements can be of any type

Ā M

- Elements distributed over the workers
- Matlab will automatically use parallel version of operator If operand is distributed variable

GPU Programming

What is a GPU?

- Accelerator card
- Thousands of small computing cores
- Dedicated high speed memory.

GPU Programming

- MATLAB provides GPU versions for a large number of MATLAB operators.
- Completely transparent to user
- Matlab will automatically use GPU version of operator If operand is GPU variable

>> methods('gpuArray');

Copy to/from GPU

- function: var2=gpuArray(var1) → copy variable "v1" on host to GPU and name "v2"
- function: var2=gather(var1) → copy variable "v1" on GPU to host and assign to variable "var2"
- Use convenient functions to create data directly on the GPU

>> a = zeros(100);
>> ag = gpuArray(a);
>> bg = gpuArray.rand(100);

parpools revisited

What if you want more workers than cores/nodes?

Remember from creating parpool, didn't provide cluster profile, so using default '**local**' profile!

parpools revisited

What if you want more workers than cores/nodes?

Remember from creating parpool, didn't provide cluster profile, so using default '**local**' profile!

or want to distribute workers over multiple nodes?

(e.g. so each worker can use more threads)

Ā M

parpools revisited

What if you want more workers than cores/nodes?

Local Profile:

- Workers must run on same computer/node as main MATLAB
- Limited to the number of cores on a computer/node → 28 workers on terra (20 on ada)
- Part of the MATLAB Parallel Toolbox

Cluster Profile

- Number of workers only limited by license (currently 96, shared)
- Integrates with Batch scheduler (e.g. slurm and lsf)
 - Will actually submit lsf/slurm jobs
 - Workers will be running on the compute nodes

MDCS license

Importing Cluster Profile

>> profile = parallel. importProfile(<PATH>);

- Only need to import cluster profile once
- Pre-created profile located in \$MATLABDIR/profiles/TAMU

tamu convenience function:

>> tamu_import_TAMU_clusterprofile();

- Wrapper around parallel.clusterProfile()
- No need to provide location of pre-created profile
- Creates directory in scratch directory to store meta data

Cluster Properties

How to attach properties (e.g. workers/threads/time)?

Defining cluster properties:

Only

on HPRC

>> help TAMUClusterProperties % to see all options
>> tp = TAMUClusterProperties();
>> tp.workers(4);
>> tp.walltime('02:00);

Attaching properties to cluster profile:

% attach the properties to the profile >> profile= tp.tamu_set_profile_properties(tp);

MATLAB batch function Offloads a script or function to worker(s), control is returned immediately, Job object is returned

>> j=batch(cluster obj>,'myscript','Pool',N); % offloads script (start pool)
>> j=batch(<cluster obj>, @myfunc,N,{x1,x2}); % offloads function

>> j= tamu_run_batch(tp,'myscript');

Retrieving Job info and results:

>> r= j.State(); %
>> j.wait(); % offloads script (start pool)
>> j.load(); % offloads script (start pool)
>> res= j.fetchOutputs(); % offloads function

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

HPRC Developed HPRC Developed

Remote batch submission

Submit jobs from user's local MATLAB session (laptop/desktop)

from Matlab command line

>> tp = TAMUClusterProperties();
>> tp.hostname('terra.tamu.edu');
>> tp.user('<netid>');
>> j1=tamu_run_batch(tp,'mytest');

% or run a function

>> cp=tamu_set_profile_properties(tp);
>> j2=batch(cp,@myfun,1,{a,b});

😣 🖨 🗊 TAMU HPRC			
SCRIPT TO RUN: Browse GPU			
MATLAB OPTIONS	PARALLEL OPTIONS	BATCH OPTIONS	
WHERE TO RUN	●terra u	username	
Attach Input Files	Add input files (or other f	files) that are used by the	script
High Perform	CLOSE SU	UBMIT	c.tamu.edu

using the MATLAB app

Download framework and app at <u>https://hprc.tamu.edu/files/HPRC.mlappinstall</u> https://hprc.tamu.edu/wiki/SW:Matlab#Running_.28parallel.29_Matlab_Scripts_on_HPRC_compute_nodes

Questions?

For additional information/help: See Wiki: <u>https://hprc.tamu.edu/wiki/SW:Matlab</u> Send email: help@hprc.tamu.edu