High Performance Research Computing

A Resource for Research and Discovery

Introduction to Genome/Transcriptome Assembly, using Sequencing Technologies

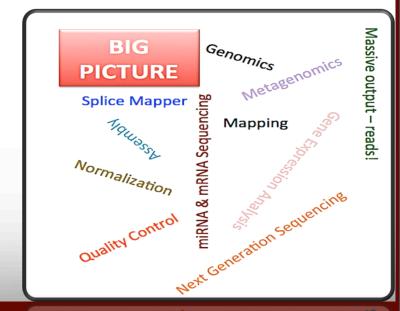
Noushin Ghaffari, PhD

Bioinformatics Scientist, Genomics and Bioinformatics, Texas A&M AgriLife Research Research Scientist, Texas A&M High Performance Research Computing

Outline

- Background
 - Sequencing
- Application of Sequencing in Research
 - Transcriptome assembly
 - Evaluations
 - Hands-on experiments

Primary NGS Applications


- 1. Alignment
- 2. Assembly (no reference, with a reference)
 Genome
 Transcriptome

Last week \longrightarrow 3. RNA-Seq

Next Week -> 4. Metagenomics

5. ChIP-Seq

Next Week \longrightarrow 6. RADSeq

Why sequencing?

Determining the sequence of nucleotides within a DNA (or RNA) fragment

- Ultimately completing the genome of non-model organisms, e.g. <u>Pacific whiteleg shrimp</u>
- Human genome project, \$3.8 Billion, 13 years to complete (1990-2003), 8-9x, coverage,
 27 GBases

How?

Using sequencing methods, such as Sanger sequencing, next generation sequencing and single-molecule techniques

NGS Sequencing Workflow

DNA/RNA extraction

Library creation/amplification

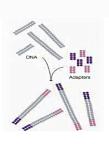
Sequencing (Illumina HiSeq or PacBio Sequel)

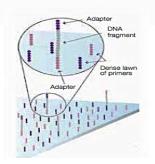
<u>Data Analysis</u>

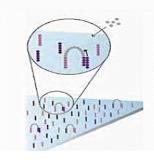
<u>Pre-processing:</u> Base calling, Generating output sequences files (FASTQ), Quality Control (QC)

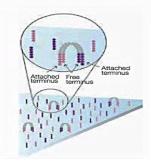
<u>Initial processing:</u> Alignment, De novo assembly <u>RNA-Seq:</u> Normalization, Counting, Expression analysis <u>Discovery:</u> SNP, CNV, Annotation

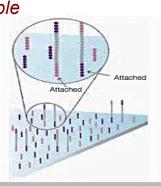
SHORT READS

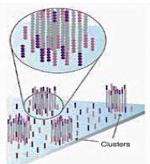

• Illumina

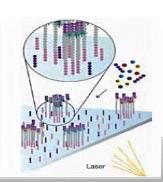


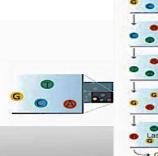

Illumina next-generation sequencing

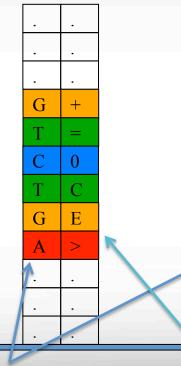

Sequencing by Synthesis (SBS) Technology


- Randomly shearing DNA
- Attaching DNA fragments to the flowcell surface
- Cluster generation, "Bridge Amplification"
- Adding four labelled reversible terminators, primers, and D polymerase
- Determining the attached nucleotide, based on the emitted fluorescence









Sequence and Quality Scores

Quality scores measure the probability that a base is called incorrectly.

flow-cell surface

adapter sequence sequence fragment adapter sequence

Read Quality Score

Quality Score

- Illumina Quality Score
 - Phred-like algorithm: similar to scoring for Sanger sequencing
 - Quality score of a given base, Q, is defined as:
 - a e: estimated probability of the base call being wrong

$$Q = -10\log_{10}(e)$$

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.90%

FASTQ Format

Illumina 1.8+, Phred+33, raw reads typically (0, 41)

```
Read 1
```

@HWI-EASXXX:96:96:1:1:7939:13150 1:N:0:

TTCTCCCCCTTCTCCGTTTCATTCCACCCGCCCTATTCCTTCGCCTCCTCTTCCTTG

+

BEHBHGDA(DA>CCAEAHHHHGGHGHADCF@CDCE@EGGGDHH?HG@GGDGFGGGGE=

@HWI-EASXXX:96:96:1:1:14632:1706 1:N:0:

.

HHHHHFGD(GCGECGGHHHBDGEGGGGGG>HFHDHBG2D8C>C)C-@D?;A>ECECAA0A=;+B0A?+;AD<@DB>5=A@@

Read 2

@HWI-EASXXX:96:96:1:1:7939:13150 <u>2</u>:N:0:

CAAGGAAGAGGAGGCGAAGGAATAGGGCGGGTGGAATGAAACGGAGAAGAGGGGAGAA

4111166664@@@@@@@@@@@@@@@8@@@;@44284477778+4666575228884444@

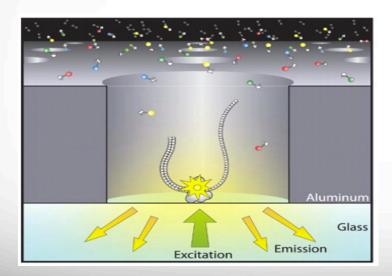
@HWI-EASXXX:96:96:1:1:14632:1706 2:N:0:

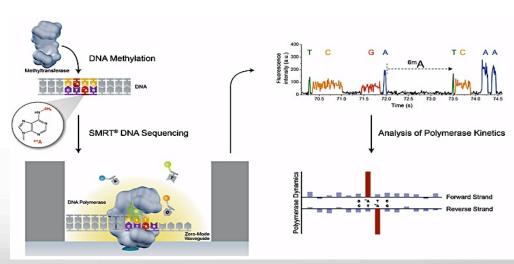
+

Texas A&M University High Performance Research Computing - https://hprc.tamu.edu

Choosing Illumina Sequencer!

http://core-genomics.blogspot.com/2016/01/meet-newest-members-of-family-miniseq.html


LONG READS


- Pacific Biosciences (PacBio)
- Oxford Nanopore Technologies MinION

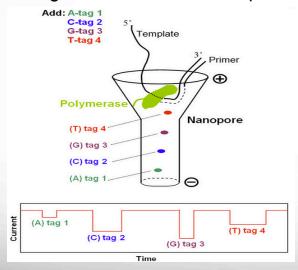
Long reads - PacBio

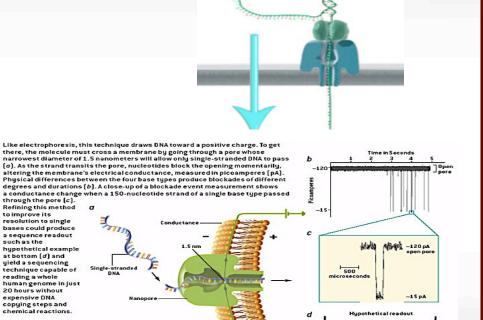
- Single Molecule Real Time Sequencing (SMRT) Methodology
- Fluorescent dyes
- Zero Mode Waveguide (ZMW)
- DNA polymerase is immobilized at the bottom of a ZMW

http://www.nature.com/scientificamerican/journal/v294/n1/full/scientificamerican0106-46.html

http://science.sciencemag.org/content/323/5910/133.full

PacBio Sequel




~10 GB per SMRT Cell 1M ZMW/SMRT Cell Up 16 SMRT/week 10 hour run time/SMRT Avg. read 10-15kb

~10x jump over RSII

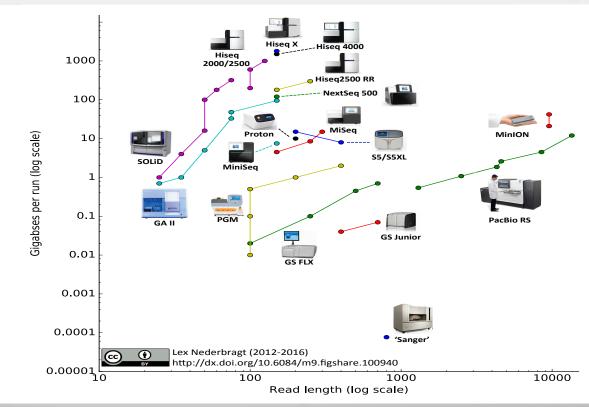
Long reads – Oxford NanoPore

- Oxford Nanopore Technologies
- Nanopore: a small hole (nanometer)
 - used to identify DNA sequence, passing through nanopore
- Single DNA molecule is sequenced

http://www.nature.com/scientificamerican/journal/v294/n1/full/scientificamerican0106-46.html

http://www.kurzweilai.net/single-molecule-electronic-dna-sequencing#!prettyPhoto

such as the

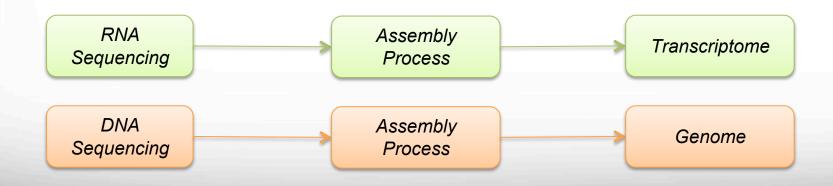


TAMU holds patent Dr. Higgin Bailey

NGS Read Specifications

Lex Nederbragt blog: https://flxlexblog.wordpress.com/2016/07/08/developments-in-high-throughput-sequencing-july-2016-edition/

Comparing Sequencing Technologies


Platform	Read length	Error rates	Technology	Portable?
Illumina	< 400 bp	Low	Sequencing by synthesis	No
PacBio	~ 10-15 Kb	High	SMRT – ZMW	No
Oxford Nanopore Technologies	~ 5-8 Kb	High	Nanopore protein – strand sequencing	Yes

Why assembly?

Generating the consensus of transcriptome or genome of non-model species

Reconstructing the genome and transcriptome of non-model species are essential steps in expanding our understanding of the organism and developing therapeutic approaches to fight disease

De novo Assembly

- Pool of reads
- No Reference genome!
- Creating consensus from the reads

Consensus Genome/Transcriptome

Contig n: ...GATCTACCTATTTTAATCTATCTAGACCCATAAAAAAAGTAAAAATTAGTAATTCTTAAGTAATATTAAGTATCGTGG...

De novo assembly algorithm: to create a reference Genome/Transcriptome

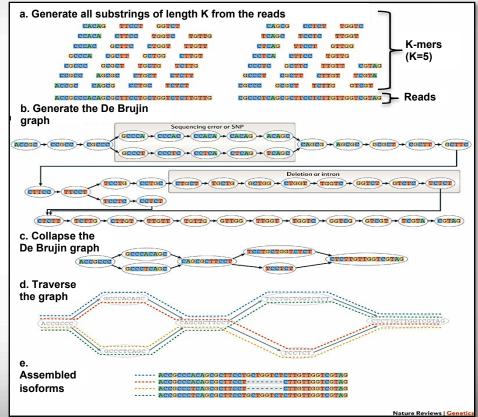
ATATAAA

Million of reads

CTATAGT CTATGAG

CCCCAGG TACTAGA

GGTTACG


CTATAGC

AAATAGG TTATAAA TTTTTTA

GTATATC AGTACTC

De novo Assembly - 2

- Connection reads by finding common sections of kmers
 - Kmers are made from reads!
- Resolving conflicts
- Complicated process!
- Highly computational resource demanding!

De novo Assembly - 3

Reference Genome Generation

- Goal: generating the reference genome for a new species, using the genomic DNA data, generated by NGS/Single Molecule platforms
- Main tool: de novo assembly algorithms
- Output: annotated reference genome

De novo Assembly - 4

Sanger	Next Generation Sequencing		
Low coverage depth	High coverage depth		
High cost for large genomes	Relatively low cost, even for large genomes		
Slow	Fast		
Handles repeats well	Need long reads for repeated regions (e.g. PacBio, Illumina Mate- Pair)		
Region 1 Region	on 1, repeated		
Short reads Long reads			

Genome Assembly Tools:

- ALL PATHS
- ALLPATHS-LG (Special recipe: fragments + jumping libraries)
- DISCOVAR de novo
- ABySS
- FUI FR-SR
- SOAPDenovo
- VCAKE
- Velvet
- MaSuRCA
- Canu (will cover in practical portion today)
- CLC Bio Genomics Workbench

Transcriptome Assembly Tools:

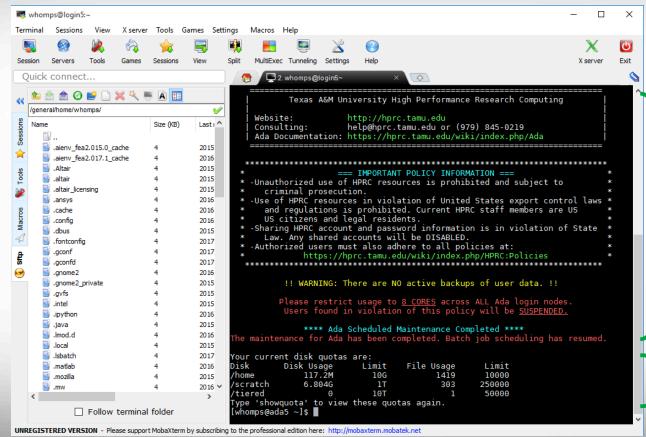
- SOAPdenovo-Trans
- Trans-ABySS
- Velvet + Oases
- Trinity (will cover in practical portion today)
- Rnnotator
- CLC Bio Genomics Workbench

High Quality Assembly

- Hybrid Approach
- High Coverage
- Merging
 - Metassembler

Practical Portion

Logging in to the system


- SSH (secure shell)
 - The only program allowed for remote access; encrypted communication; freely available for Linux/Unix and Mac OS X hosts;
- For Microsoft Windows PCs, use MobaXterm
 - https://hprc.tamu.edu/wiki/HPRC:MobaXterm
 - You are able to view images and use GUI applications with MobaXterm
 - or Putty
 - https://hprc.tamu.edu/wiki/HPRC:Access#Using_PuTTY
 - You can not view images or use GUI applications with PuTTY

Your Login Password

- Both state of Texas law and TAMU regulations prohibit the sharing and/or illegal use of computer passwords and accounts
- Don't write down passwords
- Don't choose easy to guess/crack passwords
- Change passwords frequently

Using SSH - MobaXterm (on Windows)

message of the day

your quotas

Using SSH to Access Ada

ssh user_NetID@ada.tamu.edu

https://hprc.tamu.edu/wiki/Ada:Access

You may see something like the following the first time you connect to the remote machine from your local machine:

Host key not found from the list of known hosts.

Are you sure you want to continue connecting (yes/no)?

Type yes, hit enter and you will then see the following:

Host 'ada.tamu.edu' added to the list of known hosts.

user_NetID@ada.tamu.edu's password:

Contact the HPRC Helpdesk

Website: hprc.tamu.edu

Email:

help@hprc.tamu.edu

Telephone: (979) 845-0219

Help us, help you -- we need more info

- Which Cluster
- UserID/NetID
- Job id(s) if any
- Location of your jobfile, input/output files
- Application used if any
- Module(s) loaded if any
- Error messages
- •Steps you have taken, so we can reproduce the problem

Any question?

nghaffari@tamu.edu

