
Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Introduction to OpenMP

Marinus Pennings
November 8, 2019

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Agenda
▪ What is openMP?

▪ Starting parallel region
▪ Data Scopes
▪ Work sharing
▪ Dependencies and Reductions
▪ Synchronization
▪ Scheduling
▪ OpenMP tasks

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

https://hprc.tamu.edu/training/intro_openmp.html
Short course home page:

Setting up OpenMP sample codes:

Type: /scratch/training/OpenMP/setup.sh
(in terra, ada, or curie shell)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Basic Computer Architecture

64GB MEMORY

co
re

co
re

co
re

co
re

...
 14 cores

co
re

co
re

co
re

co
re

...
 14 cores

terra node

All modern computers have
multiple processing cores (
4 on average desktop). On
terra, each NODE has 28
cores (two 14 core cpus)
per node and at least 64GB
of SHARED memory

(NOTE: ada has 20 cores per node
and curie has 16)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

All modern computers have
multiple processing cores (
4 on average desktop). On
terra, each NODE has 28
cores (two 14 core cpus)
per node and at least 64GB
of SHARED memory

(NOTE: ada has 20 cores per node
and curie has 16)

Basic Computer Architecture

64GB MEMORY

co
re

co
re

co
re

co
re

...
 14 cores

co
re

co
re

co
re

co
re

...
 14 cores

terra node

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Defacto standard API for writing shared memory parallel applications in C, C++, and
Fortran

OpenMP API consists of:
Compiler pragmas/directives
Runtime subroutines/functions
Environment variables

What is OpenMP?

!$OMP DIRECTIVE [clauses]
 :
!$OMP END DIRECTIVE

#pragma omp directive [clauses]
{
 :
}

Not case sensitive

New line required

fortran directive format:

C/C++ pragma format:

In a nutshell: using OpenMP,
you can make a serial program
run in parallel by annotating
parts of the code that you want
to run in parallel

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

c some fortran code
!$OMP PARALLEL
c code block, will be
c executed in parallel
!$OMP END PARALLEL

c more fortran code

// some C/C++ code
#pragma omp parallel
{
 // code block, will be
 // executed in parallel
}

// more C/C++ code

Starting Parallel Region

This will start an OpenMP region. A team of threads will be be created,
the code inside the parallel block will be executed concurrently by all
threads.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

HelloWorld
Exercise:

1) Create OpenMP version of HelloWorld (either C/C++ or Fortran)
a) Create parallel region
b) Every thread prints Hello World
c) Close the parallel region

2) Compile the program (you can use GNU or Intel compiler)
3) Execute the program

 SOURCE

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

program HELLO
!$OMP PARALLEL
print *,”Hello World”
!$OMP END PARALLEL
end program HELLO

#include <iostream>

int main() {
#pragma omp parallel
 {
 std::cout << ”Hello World\n”;
 }
 return 0;
}

intel: ifort -qopenmp -o hi.x hello.f90
gnu: gfortran -fopenmp -o hi.x hello.f90

intel: icpc -qopenmp -o hi.x hello.cpp
gnu: g++ -fopenmp -o hi.x hello.cpp

directive

pragma

HelloWorld

COMPILING

 SOURCE

Need to include flag to tell the compiler to process the OpenMP pragmas/directives

Compile the program , and run again

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

program HELLO
!$OMP PARALLEL
print *,”Hello World”
!$OMP END PARALLEL
end program HELLO

#include <iostream>

int main() {
#pragma omp parallel
 {
 std::cout << ”Hello World\n”;
 }
 return 0;
}

intel: ifort -qopenmp -o hi.x hello.f90
gnu: gfortran -fopenmp -o hi.x hello.f90

intel: icpc -qopenmp -o hi.x hello.cpp
gnu: g++ -fopenmp -o hi.x hello.cpp

directive

pragma

HelloWorld

COMPILING

 SOURCE

Need to include flag to tell the compiler to process the OpenMP pragmas/directives

RUNNING

export OMP_NUM_THREADS=4
./hi.x

Run the program again
(I promise, it will work now)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Fork/Join
#include <iostream>
#include <omp.h>

using std;
int main() {
#pragma omp parallel
 {
 cout << ”Hello world\n”;
 }
 return 0;
}

Runtime starts additional threads at
start of openmp region

thread #1

thread #0

thread #2

start

cout << ”Hello World” cout << ”Hello World” cout << ”Hello World” cout << ”Hello World”

thread #3#pragma omp parallel

 }

{{ { {

} } }

return 0;
end

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

 OpenMP threads are mapped onto physical cores
 Possible to map more than 1 thread onto a core
 In practice best to have one-to-one mapping.

(OpenMP) THREAD: Independent sequence of code, with a
single entry and a single exit

Threads & Cores

CORE: Physical processing unit that receives instructions and
performs calculations, or actions, based on those instructions.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

 Runtime function: omp_get_thread_num()

 id = omp_get_thread_num(); // 0
 #pragma omp parallel
 {
 id = omp_get_thread_num(); // <thread id in region>
 }

 Runtime function: omp_get_num_threads()

 tot = omp_get_num_threads(); // 1
 #pragma omp parallel
 {
 tot = omp_get_num_threads(); // < total #threads in region>
 }

Getting Thread info

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

 Environmental variable: OMP_NUM_THREADS

 export OMP_NUM_THREADS=4
 ./a.out

 Runtime function: omp_set_num_threads(n)

 omp_set_num_threads(4);
 #pragma omp parallel
 :

 OMP PARALLEL clause: num_threads(n)

 #pragma omp parallel num_threads(4)

???

case sensitive

???

Setting the number of Threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Hello Threads
Exercise:

1) Create OpenMP HelloThreads program that does the following:
a) Create parallel region
b) Every thread prints its own thread id and the total number of threads
c) Close the parallel region

2) Compile the program (you can use GNU or Intel compiler)
3) Execute the program

HINT: since you will be using OpenMP library
functions you will want to include:

C/C++ : #include “omp.h”
Fortran : use omp_lib

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Remember: memory is
(conceptually) shared by all threads

64GB MEMORY

cor
e

cor
e

cor
e

cor
e

...
 14 cores

cor
e

cor
e

cor
e

cor
e

...
 14 cores

terra node

tot=28;
Id=1;

tot=28;
Id=13;

tot=28;
Id=0;

tot=28;
Id=12;

tot=28;
Id=15;

tot=28;
Id=27;

tot=28;
Id=14;

tot=28;
Id=26;

tot=?
id=?

#pragma omp parallel
{
 tot = omp_get_num_threads();
 id = omp_get_thread_num();
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Remember: memory is
(conceptually) shared by all threads

64GB MEMORY

cor
e

cor
e

cor
e

cor
e

...
 14 cores

cor
e

cor
e

cor
e

cor
e

...
 14 cores

terra node

tot=28;
Id=1;

tot=28;
Id=13;

tot=28;
Id=0;

tot=28;
Id=12;

tot=28;
Id=15;

tot=28;
Id=27;

tot=28;
Id=14;

tot=28;
Id=26;

tot=20
id=?

All threads try to access
the same variable
(possibly at the same
time). This can lead to a
race condition. Different
runs of same program
might give different
results because of these
race conditions

#pragma omp parallel
{
 tot = omp_get_num_threads();
 id = omp_get_thread_num();
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Index variables (Fortran, C/C++) and variables declared inside parallel region (C/C++) are considered private by default.

Every thread will have it's own ”private” copy of variables in list
No other thread has access to this ”private” copy
Private variables are NOT initialized with value before region started
(use firstprivate instead)
Private variables are NOT accessible after enclosing region finishes

Data scope clauses: private(list)

!$OMP PARALLEL PRIVATE(a,c)
 :
!$OMP END PARALLEL

Data Scope Clauses

#pragma omp parallel private(a,c)
{

}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

All variables in list will be considered shared
Every OpenMP thread has access to all these variables
Programmer's responsibility to avoid race conditions

Data scope clauses: shared(list)

!$OMP PARALLEL SHARED(a,c)
 :
!$OMP END PARALLEL

Data Scope Clauses

#pragma omp parallel shared(a,c)
{

}

By default most variables in work sharing constructs are considered shared in OpenMP. Exceptions include index
variables (Fortran, C/C++) and variables declared inside parallel region (C/C++).

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Data scope clause: default(shared | private | firstprivate | lastprivate)

Other Data Scope Clauses
Data scope clauses: firstprivate(list)

Every thread will have it's own ”private” copy of variables in list.
No other thread has access to this ”private” copy.
firstprivate variables are initialized to value before region started.
firstprivate variables are NOT accessible after end of enclosing region.

Set default data scoping rule.
If not set, default depends on the pragma/directive (e.g. Shared for ”for” pragma).

demo datascope

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Hello Threads (take 2)
Exercise:

1) Create OpenMP HelloThreads program that does the following:
a) Create parallel region
b) Every thread prints its own thread id and the total number of threads
c) Close the parallel region

2) Compile the program (you can use GNU or Intel compiler)
3) Execute the program

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

#pragma omp parallel
{
 tot = omp_get_num_threads();
 id = omp_get_thread_num();
}

Remember: memory is
(conceptually) shared by all threads

64GB MEMORY

cor
e

cor
e

cor
e

cor
e

...
 14 cores

cor
e

cor
e

cor
e

cor
e

...
 14 cores

terra node

tot=28;
Id=1;

tot=28;
Id=13;

tot=28;
Id=0;

tot=28;
Id=12;

tot=28;
Id=15;

tot=28;
Id=27;

tot=28;
Id=14;

tot=28;
Id=26;

tot=20

id
=0

id
=1

id
=12

id
=13

id
=14

id
=15

id
=26

id
=27

Private memories

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

OpenMP creates separate data stack for every worker thread to
store private variables (master thread uses regular stack)
 Size of these stacks is not defined by OpenMP standards
 Behavior of program undefined when stack space exceeded

✔ Although most compilers/RT will throw seg fault
 To set stack size use environment var OMP_STACKSIZE:

✔ export OMP_STACKSIZE=512M
✔ export OMP_STACKSIZE=1G

 To make sure master thread has large enough stack space use
ulimit -s command (unix/linux).

TIP: Stack size

Let’s create a demo program where the threads fill up the stack space

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

for command must immediately follow “#pragma omp for”
Newline required after “#pragma omp for”
Originally iteration variable could only be signed/unsigned integer variable.

OR

 :
#pragma omp parallel
#pragma omp for
 for (int i=1;i<N;++i)
 A(i) = A(i) + B;

 :

 :
#pragma omp parallel for
 for (int i=1;i<N;++i)
 A(i) = A(i) + B;

 :

Work sharing pragma (C/C++): #pragma omp for [clauses]

Work Sharing Directives

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

!$OMP PARALLEL
!$OMP DO
DO n=1,N
 A(n) = A(n) + B
ENDDO
!$OMP END DO
!$OMP END PARALLEL

!$OMP PARALLEL DO
DO n=1,N
 A(n) = A(n) + B
ENDDO
!$OMP END PARALLEL DO

DO command must immediately follow “!$OMP DO” directive
 Loop iteration variable is “private” by default
 If “end do” directive omitted it is assumed at end of loop
 Not case sensitive

OR

Work sharing directive (Fortran): !$OMP DO [clauses]

Work Sharing Directives

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Work Sharing
for (int i=1 ; i<250 ; ++i)
 A(i) = A(i) + B;

for (int i=251 ; i<500 ; ++i)
 A(i) = A(i) + B;

for (int i=501 ; i<750 ; ++i)
 A(i) = A(i) + B;

for (int i=751 ; i<1000 ; ++i
)
 A(i) = A(i) + B;

THREAD 0

THREAD 1

THREAD 2

THREAD 3

#pragma omp parallel for
 for (int i=1;i<1000;++i)
 A(i) = A(i) + B;

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Random access iterators:

vector<int> vec(10);
vector<int>::iterator it=
vec.begin();
#pragma omp parallel for
 for (; it != vec.end() ; ++it) {
 // do something with *it
 }

Pointer type:

int N = 1000000;
int arr[N];
#pragma omp parallel for
 for (int* t=arr;t<arr+N;++t) {
 // do something with *t
}

Work Sharing Directives
New in

OpenMP
3.0

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Matrix multiplication
Exercise:

1) Create program that computes simple matrix vector multiplication:
a) Use the OpenMP work sharing construct
b) Create as function that takes as arguments matrix and vector
c) Add timing to see the running time.

2) Compile and run the program
3) Try it with various number of threads
4) Vary the input size and see how it affects run time

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Case Study:
Assume the following dummy program:

 A=int[N]; // set all elements to -1
 for (int i=0 ; i<N ; ++i) A[i] = i;

We want to run this in parallel. Normally we would use the OpenMP
worksharing directive. Let’s do it without and partition the loop manually

1) Start a parallel region.
2) Every thread will computes its offsets
3) Every thread will process part of the loop.

Manual Worksharing

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

An OpenMP pragma that appears independently from another enclosing pragma
is called an orphaned pragma. It exists outside of another pragma static extent.

Note: OpenMP directives (pragmas) should be in the dynamic extent of a parallel section directive (pragma).

int main() {
#pragma omp parallel
 foo()
 return 0;
}

void foo() {
#pragma omp for
 for (int i=0;i<N;i++) {….}
}

TIP: ORPHANED PRAGMAS

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Can all loops can be parallelized?

for (i=1 ; i<N ; ++i)
 A[i] = A[i-1] + 1
end

Data Dependencies

#pragma omp parallel for
for (i=1 ; i<N ; ++i)
 A[i] = A[i-1] + 1
end

Is the result guaranteed to be correct if you run this loop in parallel?

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Can all loops can be parallelized?

for (i=1 ; i<N ; ++i)
 A[i] = A[i-1] + 1
end

Data Dependencies

#pragma omp parallel for
for (i=1 ; i<N ; ++i)
 A[i] = A[i-1] + 1
end

Unroll the loop (partly):

 iteration i=1: A[1] = A[0] + 1
 iteration i=2: A[2] = A[1] + 1
 iteration i=3: A[3] = A[2] + 1

A[1] used here, defined in previous
iteration

A[2] used here, defined in previous
iteration

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

A reduction variable is a special variable that is updated during every iteration of a
loop and there are no other definitions or uses of that variable. Update is always of

the form “a = a op b”

for (int i=0;i<10;++i)
 sum=sum+a[i];

Reductions

#pragma omp parallel for
for (int i=0;i<10;++i)
 sum=sum+a[i];

Can we run this in parallel?

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Data scope clause: REDUCTION(op:list)

Only certain kind of operators allowed
✔ +, - , * , max, min,
✔ & , | , ^ , && , || (C/ C++)
✔ .and. , .or. , .eqv. , .neqv. , iand , ior , ieor (Fortran)

OpenMP 4.0 allows for user defined reductions

Reductions
A reduction variable is a special variable that is updated during every iteration of a
loop and there are no other definitions or uses of that variable. Update is always of

the form “a = a op b”

for (int i=0;i<10;++i)
 sum=sum+a[i];

#pragma omp parallel for reduction(+:sum)
for (int i=0;i<10;++i)
 sum=sum+a[i];

Reduction variable
has to be shared

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Dot product (take 1)
Exercise:

1) Create program that takes 2 vectors (arrays) and computes:
a) The dot product of the vectors
b) the largest element of the two vectors

2) Add timing to compute the run time
3) Compile and run the program
4) Try it with various number of threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

#pragma omp declare reduction (name : type list : combiner) \
initializer(initializer-expression)

!$ omp declare reduction (name : type list : combiner) \
initializer(initializer-expression)

Example: UDR that computes sum (mimics + operator)

#pragma omp declare reduction (mysum : int : omp_out = omp_out + omp_in)
initializer(omp_priv = 0)

User Defined Reductions
New in

OpenMP
4.0

Fixed variable names to represent
in and out of reductionFixed variable name

to represent initializer

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Case Study:
suppose we have a vector of random points (with x and y coordinates). We
want to find the point with the longest distance (d= sqrt(x^2+y^2))

1) Create a C++ class with
a) Two members: x and y coordinate
b) Member function that computes the distance

2) Create User Defined Reduction that takes pair of points and returns one with longest
distance

3) Create OpenMP loop with reduction clause that computes the point with longest
distance.

4) Compile and run with various number of threads.

User Defined Reductions

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

One thread (not neccesarily master)
executes the block
Other threads will wait
Useful for thread-unsafe code
Useful for I/O operations

#pragma omp single (!$OMP SINGLE)

Work Sharing Directives
#pragma omp sections (!$OMP SECTIONS)

#pragma omp parallel
{
#pragma omp sections
 {
#pragma omp section
 process(A1,A2)
#pragma omp section
 process(B1,B2)
 }
}

In an OpenMP sessions block, all ”sections”
will be executed concurrently
Each section will be processed by a separate
thread
How is this different from #pragma omp for

#pragma omp parallel
{
#pragma omp single
 {
 std::cout << ”thread” <<

omp_get_thread_num() <<
 ” reached here first\n”;
 }
}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Worksharing constructs have an implicit barrier at the end of
their worksharing region. To ommit this barrier:

!$OMP DO
 :
!$OMP END DO NOWAIT

#pragma omp for nowait
 :

At end of work sharing constructs threads will not wait
There is always barrier at end of parallel region

NOWAIT Clause

demo nowait as part of single construct

NOTE: In example above the nowait clause is used with a for/do work sharing construct. It also works with the other
worksharing construct: sections and single

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

OpenMP Synchronization

OpenMP programs use shared variables to communicate. Need
to make sure these variables are not accessed at the same

time by different threads to avoid race conditions.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Synchronization Directive
#pragma omp critical (!$OMP CRITICAL)

ALL threads will excute the code inside the block
Execution of the block is serialized, only one thread at a time will execute the block
Threads will wait at start of block when another thread already inside the block

int tot=0; int id=0;
#pragma omp parallel
{
#pragma omp critical
 {
 id = omp_get_thread_num(); tot=tot+id;
 std::cout << “id “ << id << “, tot: “ << tot << “\n”;
 }
 // do some other stuff
}

Will threads wait until all other treads
have finished?

Only one thread can execute
block, other threads will wait

NOTE: If block consists of only a single assignment can use #pragma omp atomic instead

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

 {
 // some code
 }

#pragma omp critical
#pragma omp critical

 {
 // some code
 }

 {
 // some code
 }

 {
 // some code
 }

#pragma omp critical

#pragma omp critical

Thread 0Thread 3 Thread 1 Thread 2

Thread 3 reaches
critical block first,
starts executing

Thread 3
finished, will
continue

Thread 1 reaches
critical block. Thread 3
still executing, so has
to wait

Thread 1 finished,
Thread 0 starts
executing block

Thread 1
finished, will
continue

Thread 0
finished, will
continue

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Dot product (take 2)
Exercise:

1) Create program that takes 2 vectors and computes:
a) The dot product of the vectors
b) the largest element of the two vectors
c) This time use OpenMP atomic blocks

2) Add timing to compute the run time
3) Compile and run the program
4) Try it with various number of threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

#pragma omp master (!$OMP MASTER)

Synchronization pragma

#pragma omp barrier (!$OMP BARRIER)

ALL threads will wait at the barrier.
Only when all threads have reached the barrier, each thread can continue
Already seen implicit barriers, e.g. at the end of ”#pragma omp parallel”, ”#pragma
omp for”

ONLY master threads will excute the code inside the block
Other threads will skip executing the block
Other threads will not wait at end of the block

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

OpenMP provides another useful clause to decide at run time if a parallel region
should actually be run in parallel (multiple threads) or just by the master thread:

IF (logical expr)

For example:

$!OMP PARALLEL IF(n > 100000) (fortran)
#pragma omp parallel if (n>100000) (C/C++)

This will only run the parallel region when n> 100000

TIP: IF Clause

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

TIP: Printing OMP env vars

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

THREAD
0

THREAD
1

THREAD
2

THREAD
3

1 250 500 750 1000

Although the OpenMP standard does not specify how a loop should be
partitioned most compilers split the loop in N/p (N #iterations, p #threads) chunks
by default.

 SCHEDULE (STATIC,250) //loop with 1000 iterations, 4 threads

!$OMP PARALLEL DO SCHEDULE (STATIC,250) #pragma omp parallel for schedule(static,250)
DO i=1,1000 for (int i=0;i<1000;++i) {
 : :
ENDDO
!$OMP END PARALLEL DO

Scheduling Clauses

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

0 1 2 3 0 1 2 3 0 1 2 3…..

1 10 20 30 40 50 60 70 80 960 970 980 990 1000

!$OMP PARALLEL DO SCHEDULE (STATIC,10) #pragma omp parallel for schedule(static,10)
DO i=1,1000 for (int i=0;i<1000;++i) {
 : :
ENDDO }
!$OMP END PARALLEL DO

Scheduling Clauses
 SCHEDULE (STATIC,10) //loop with 1000 iterations, 4 threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

With static scheduling the number of iterations is evenly distributed among all openmp
threads. This is not always the best way to partition. Why?

Ti
m
e
p
er
it
er
at
io
n

0 7654321
Iterations

Thread 0

Thread 1 Thread 2 Thread 3

How can this happen?

Scheduling Clauses

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Iterations

Ti
m
e
p
er
it
er
at
io
n

This is called load
imbalance. In this case
threads 2,3, and 4 will be
waiting very long for
thread 1 to finish

How can this happen?

Scheduling Clauses

0 7654321
Iterations

Thread 0

Thread 1 Thread 2 Thread 3

With static scheduling the number of iterations is evenly distributed among all openmp
threads. This is not always the best way to partition. Why?

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Loop iterations are divided into pieces of size chunk. When a thread finishes
one chunk, it is dynamically assigned another.

NOTE: there is a significant overhead involved
compared to static scheduling. WHY?

!$OMP PARALLEL DO SCHEDULE (DYNAMIC,10) #pragma omp parallel for schedule(dynamic,10)
DO i=1,1000 for (int i=0;i<1000;++i) {
 : :
ENDDO }
!$OMP END PARALLEL DO

Scheduling Clauses
 SCHEDULE (DYNAMIC,10) //loop with 1000 iterations, 4 threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Similar to DYNAMIC schedule except that chunk size is relative to
number of iterations left.

!$OMP PARALLEL DO SCHEDULE (GUIDED,10) #pragma omp parallel for schedule(guided,10)
DO i=1,1000 for (int i=0;i<1000;++i) {
 : :
ENDDO }
!$OMP END PARALLEL DO

Scheduling Clauses
 SCHEDULE (GUIDED,10) //loop with 1000 iterations, 4 threads

NOTE: there is a significant overhead involved
compared to static scheduling. WHY?

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

#pragma omp parallel for
for (int i=0; i<N;++i) {

:
#pragma omp parallel for
for (j=0;j<M;++j)

}

OpenMP allows parallel regions inside other parallel regions

To enable nested parallelism:
✔ env var: OMP_NESTED=1
✔ lib function: omp_set_nested(1)

To specify number of threads:
✔ omp_set_ num_threads()
✔ OMP_NUM_THREADS=4,2

NOTE: using nested parallelism does introduce extra overhead and might over-subscribe of threads

Nested Parallelism

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Task
1

Task
2

Task
n

Task
3

Threads add tasks to pool

Available threads

retrieve tasks from the

pool and execute them

OpenMP Tasks
New in

OpenMP
3.0

Each task is independent unit of work
When a thread enounter a task
construct, thread decides to execute it
itself or put in task pool
Available threads will execute tasks
Tasks consist of:

Code to execute
Data environment

Especially useful for unbounded loops, Irregular algorithms,
Tree/lists, Recursive algorithms, Producer/Consumer type problems.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

OpenMP Tasks
Creating tasks

Synchronization

#pragma omp task
Defines/creates new task
Task will be added to task pool
Idle thread will get tasks from pool and
executes it
Has to be in parallel region

#pragma omp taskwait
Acts like a barrier
Thread wait until all child tasks have
finished

Default Data Scope Rules

int b , c ;
#pragma omp parallel private (b)
{
 int d ;
#pragma omp task
 {
 int e;
 b , d; // firstprivate
 c; // shared
 e; // private
 }
}

Enclosing data scope
is private, inside task
firstprivate

Enclosing data scope is
shared inside task shared

Data scope is
defined as private

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

#pragma omp parallel
{
#pragma omp single nowait
 {
#pragma omp task
 cout << “Thread “ << id << “executing task 1\n”;
#pragma omp task
 cout << “Thread “ << id << “executing task 2\n”;
 #pragma omp taskwait
 printf(“Finished with tasks\n”);
 }
 int id = omp_get_thread_num();
 printf(“ Thread %d says hello\n,id);
}

Analysis of OpenMP Tasks
Start a parallel region

Add a single construct (why?)

Add a nowait clause (why?)

Create task

Wait until all child tasks have finished

What will the code print
out, and in what order?

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Dot product (take 3)
Exercise:

1) Create program that takes 2 vectors and computes:
a) The dot product of the vectors
b) the largest element of the two vectors
c) This time, use OpenMP tasks

2) Add timing to compute the run time
3) Compile and run the program
4) Try it with various number of threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

The Intel Math Kernel Library (MKL) has very specialized and optimized versions
of many math functions (e.g. blas, lapack). Many of these have been parallelized

using OpenMP.

 MKL_NUM_THREADS
 OMP_NUM_THREADS

http://hprc.tamu.edu/wiki/index.php/Ada:MKL

MKL

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Questions?

You can always reach us at help@hprc.tamu.edu

