Introduction to Quantum Computing

Jian Tao

jtao@tamu.edu

Spring 2019 HPRC Short Course

04/05/2019

Outline

M

SCIENTIFIC PRINCIPLES

Quantum Quantum Quantum **Quantum Physics** Information **Computer** Programming

HARDWARE

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

MATHEMATICAL

THEORY

SOFTWARE

IMPLEMENTATION

Quantum Physics

A M

(Image: Queen's University Belfast)

Quantum Physics

"I think I can safely say that nobody understands quantum mechanics."

- Richard Feynman

Richard Feynman Messenger Lectures - Lecture 6 Probability and Uncertainty: The Quantum Mechanical View of Nature | The Character of Physical Law | Richard Feynman (1964)

http://www.cornell.edu/video/playlist/richard-feynman-messenger-lectures

Double Slit Experiment - Particle Duality

(Image: Wikipedia)

Heisenberg's Uncertainty Principle

 $\Delta x \Delta p \ge \frac{\hbar}{2}$

The principle asserts a fundamental limit to the precision with which certain pairs of physical properties of a particle, known as complementary variables or canonically conjugate variables such as position x and momentum p, energy E and time t, can be known.

Schrödinger's Equation

$$i\hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \left[\frac{-\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)\right]\Psi(\mathbf{r},t)$$

Schrödinger's equation is **THE EQUATION** that all applications of quantum mechanics follow. Quantum physics is primarily about studying, solving, and applying Schrödinger's equation and its extensions under certain physical conditions.

Hydrogen Wave Function

The hydrogen wave function depends on three quantum numbers **n**, **m**, and **I**. $Y_{\ell m}(\theta, \phi)$ is the spherical harmonics that depends only on the angular coordinates.

$$\psi_{n\ell m}(r,\theta,\phi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]}} e^{-r/na_0} \left(\frac{2r}{na_0}\right)^\ell L_{n-\ell-1}^{2\ell+1} \left(\frac{2r}{na_0}\right) \cdot Y_\ell^m(\theta,\phi)$$

(Image: Wikipedia)

Quantum Superposition

Since Schrödinger's equation is **LINEAR**, any linear combination of solutions will also be a solution. Given two "basis states"

 $|0\rangle$ $|1\rangle$

a superposition of the basis states can be given by

 $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

where $|\alpha|^2 + |\beta|^2 = 1$. $|\alpha|^2$ is the probability of outcome $|0\rangle$ and $|\beta|^2$ is the probability of outcome $|1\rangle$

Quantum Entanglement

When groups of particles are generated, they interact, or share spatial proximity so that the quantum state of each particle cannot be described independently of the state of the other(s). For two qubits,

$$\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$$

For example, two entangled qubits is

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$$

Quantum Entanglement

(Image: Olena Shmahalo/Quanta Magazine)

Quantum Computer

(Image: IBM Q)

Quantum Computing - Overview

"Quantum computing is the use of quantum-mechanical phenomena such as **superposition** and **entanglement** to perform computation." - Wikipedia

"Every finitely realizable physical system can be perfectly simulated by a **universal model computing machine** operating by **finite means**." - David Deutsch

Quantum Computers - Current Status

Quantum Processors (as of April 2019)

The Quantum Computing Company ^{IM}	D-Wave 2000Q	Superconducting	2048 qb	2017
rigetti 19Q Acorn		Superconducting	19 qb	17 December 2017
(intel)	Tangle Lake	Superconducting	49 qb	9 January 2018
IBM	IBM Q 50 prototype	Superconducting	50 qb	N/A
FUjitsu	Digital Annealer	Digital Circuit	8,192 bit	21 December 2018
Google Bristlecone		Superconducting	72 qb	5 March 2018
Microsoft Station Q		superconducting	N/A	N/A

(Table: Wikipedia)

AM Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Quantum Processor - Hardware

- Very small (< 10⁻⁹m, at the atomic scale)
- Isolated (not in close proximity with anything else to reduce noise)
- Very cold (~10mK, close to absolute zero)

(Image: IBM Q)

Quantum Information

(Image: Bloch Sphere - Wikipedia)

Qubits - Quantum Bits

A single qubit can be described by a linear combination of $|0\rangle$ and $|1\rangle$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Qubits States

1 qubit	2 states
2 qubits	4 states
3 qubits	8 states
4 qubits	16 states
10 qubits	1024 states

Physical Realization of Qubits

ĀМ

PHYSICAL REALIZATION	QUBIT IMPLEMENTED BY	
Superconducting	the state of small superconducting circuits	
Trapped ion	the internal state of trapped ions	
Optical lattices	the internal state of neutral atoms trapped in an optical lattice	
Quantum dot	the spin state of trapped electrons or electron position in double quantum dot.	
Nuclear magnetic resonance	the nuclear spin within the dissolved molecule and probed with radio waves	
Split electron with Majorana fermion	electron fractionalization and ground state degeneracy	

Qubits - Standard Representation

The general quantum state of a qubit can be represented by a linear superposition of its orthonormal basis states (or basis vectors). For a two qubit system, the vectors are usually denoted as

Qubits - Graphical Representation

States in which qubit are measured are known as basis vectors. Qubits are represented as |0> and |1>

Ă M

(Image: IJSER)

Quantum Logic Gate

A unitary operator that acts on a small number of qubits is often called a **GATE**, in analogy to classical logic gates like AND, NOT, etc.

Hadamard (H) gate Pauli-X or NOT gate Pauli-Y gate Pauli-Z gate Square root of NOT gate Phase shift gates SWAP gate Square root of Swap gate Controlled cX or CNOT gate Controlled (cY cZ) gates Toffoli (CCNOT) gate Fredkin (CSWAP) gate Ising (XX) coupling gate Ising (YY) coupling gate Ising (ZZ) coupling gate Deutsch gate

Not Gate or Pauli-X Gate

Hadamard Gate - "Superposition" Gate

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

ĂМ

CNOT Gate - Controlled Not or cX Gate

The **CNOT** gate is generally used in quantum computing to generate entangled states.

Quantum Programming

(Image: Wikipedia)

Full Stack Quantum Computing Libraries

<u>Qiskit</u>	IBM	Python	Framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms
<u>pyQuil</u>	Rigetti	Python	Rigetti's software library for writing, simulating, compiling and executing quantum programs.
<u>Ocean</u>	D-Wave	Python	D-Wave System's suite of tools for solving hard problems with quantum computers.
ProjectQ	IBM	Python	Hardware-agnostic framework with compiler and simulator with emulation capabilities.
Cirq	Communit y Code	Python	Cirq is a Python library for writing, manipulating, and optimizing quantum circuits and running them against quantum computers and simulators.
<u>Strawberry</u> <u>Fields</u>	Xanadu	Python	Strawberry Fields is a full-stack Python library for designing, simulating, and optimizing continuous variable quantum optical circuits.
<u>Q#</u>	Microsoft	Q#	Microsoft's quantum programming language with Visual Studio integration.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

ĀМ

ProjectQ - IBM

Damian S. Steiger, Thomas Häner, and Matthias Troyer, ProjectQ: An open source software framework for quantum computing. <u>arXiv:1612.08091, 2016</u>.

ProjectQ - Random Number Generator

from projectq.ops import H, Measure
from projectq import MainEngine

```
# create a main compiler engine
eng = MainEngine()
```

```
# allocate one qubit
q1 = eng.allocate_qubit()
# put it in superposition
H | q1
|0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} |1\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}
H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} - H
```

measure
Measure | q1
eng.flush()

```
print("Measured: {}".format(int(q1)))
```

ProjectQ - Bell Pair

ProjectQ - Teleportation

make a Bell-pair b1, b2 = create_bell_pair(eng) # Alice creates a nice state to send psi = eng.allocate_qubit() if verbose: print("Alice is creating her state from scratch, i.e., |0>.") state_creation_function(eng, psi)

```
# entangle it with Alice's b1
```

CNOT | (psi, b1)

if verbose:

print("Alice entangled her qubit with her share of the Bell-pair.")
measure two values (once in Hadamard basis) and send the bits to Bob
H | psi
Measure | psi
Measure | b1
msg_to_bob = [int(psi), int(b1)]
Bob may have to apply up to two operation depending on the message sent
by Alice:
with Control(eng, b1):
 X | b2
with Control(eng, psi):
 Z | b2

Alice has a qubit in some interesting state $|\psi\rangle$, which she would like to show to Bob. She can do a quantum teleportation with a Bell pair.

(Image: Russian Quantum Center)

Hello Quantum - IBM

(Image: Hello Quantum App | IBM)

Online Resources

Quantum Inspire

https://www.quantum-inspire.com/

An Introduction to Quantum Computing by Noson S. Yanofsky

https://arxiv.org/abs/0708.0261

Lecture notes from John Preskill at Caltech

http://www.theory.caltech.edu/~preskill/ph219/index.html

Quantum made simple

https://toutestquantique.fr/en/

Acknowledgements

- The slides are created based on the materials from ProjectQ official documentation and related Wikipedia entries.
- Supports from Texas A&M Engineering Experiment Station (TEES) and High Performance Research Computing (HPRC).