High Performance Research Computing

A Resource for Research and Discovery

Introduction to Genome/Transcriptome Assembly, using Sequencing Technologies

Noushin Ghaffari, PhD

Bioinformatics Scientist, Genomics and Bioinformatics, Texas A&M AgriLife Research Research Scientist, Texas A&M High Performance Research Computing

Research Scientist, Texas A&M High Performance Research Computing

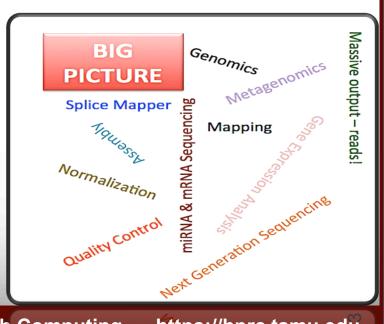
Outline

- Background
 - Sequencing
- Application of Sequencing in Research
 - Transcriptome assembly
 - Evaluations
 - Hands-on experiments

2

Primary NGS Applications

- 1. Alignment
- Today
 2. Assembly (no reference, with a reference)


 Genome

 Transcriptome

Last week \rightarrow 3. RNA-Seq

- Next Week \rightarrow 4. Metagenomics
 - 5. ChIP-Seq

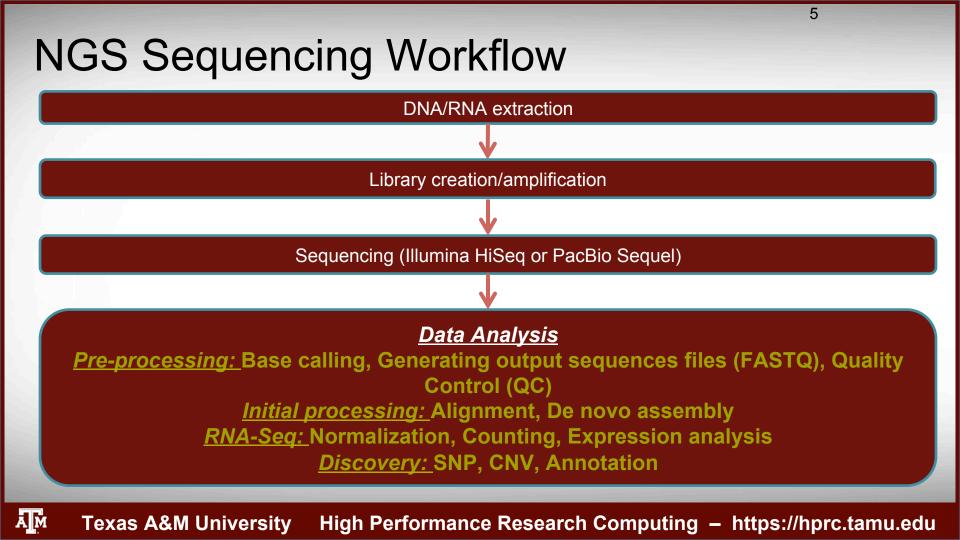
Next Week $\rightarrow 6$. RADSeq

High Performance Research Computing – https://hprc.tamu.edu Texas A&M University

4

Determining the sequence of nucleotides within a DNA (or RNA) fragment

- Ultimately completing the genome of non-model organisms, e.g. <u>Pacific whiteleg shrimp</u>
- Human genome project, \$3.8 Billion, 13 years to complete (1990-2003), 8-9x, coverage, 27 GBases

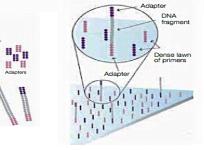

<u>How?</u>

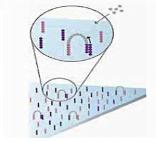
Using sequencing methods, such as Sanger sequencing, next generation sequencing and single-molecule techniques

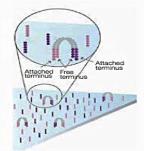
High Performance Research Computing – https://hprc.tamu.edu

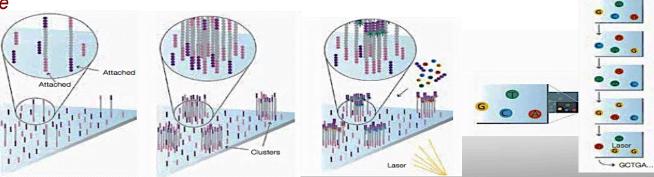
А M

Texas A&M University


SHORT READS


• Illumina


Illumina next-generation sequencing


Sequencing by Synthesis (SBS) Technology

- Randomly shearing DNA
- Attaching DNA fragments to the flowcell surface
- Cluster generation, "Bridge Amplification"
- Adding four labelled reversible terminators, primers, and D polymerase
- Determining the attached nucleotide, based on the emitted fluorescence

High Performance Research Computing – https://hprc.tamu.edu Texas A&M University

Sequence and Quality Scores

Quality scores adapter sequence measure the G +В probability that a base = С 0 (a)sequence is called incorrectly. fragment D Α G E G G A flow-cell surface adapter sequence **Quality Score** Read

Quality Score

- Illumina Quality Score
 - Phred-like algorithm: similar to scoring for Sanger sequencing

9

- Quality score of a given base, Q, is defined as:
- e: estimated probability of the base call being wrong

$$Q = -10\log_{10}(e)$$

Quality Coore	Probability of Incorrect Base Call	
Quality Score	Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.90%

FASTQ Format

Read 1

@HWI-EASXXX:96:96:1:1:7939:13150 1:N:0:

TTCTCCCCCCTTCTCCGTTTCATTCCACCCGCCCTATTCCTTCGCCTCCTCTTCCTTG

+

BEHBHGDA(DA>CCAEAHHHHGGHGHADCF@CDCE@EGGGDHH?HG@GGDGFGGGGE=

@HWI-EASXXX:96:96:1:1:14632:1706 1:N:0:

+

HHHHHFGD(GCGECGGHHHBDGEGGGGGGS>HFHDHBG2D8C>C)C-@D?;A>ECECAA0A=;+B0A?+;AD<@DB>5=A@@

Read 2

@HWI-EASXXX:96:96:1:1:7939:13150 2:N:0:

CAAGGAAGAGGAGGCGAAGGAATAGGGCGGGTGGAATGAAACGGAGAAGAGGGGGAGAA

+

4111166664@@@@@@@@@@@@@@@@@@;@44284477778+4666575228884444@

@HWI-EASXXX:96:96:1:1:14632:1706 2:N:0:

ACCTTCTCCTCCATCCTCTCCCCCCCCCTCCCCCTCTCTCTCTGTGACTCCTCCCCATTTCTTCTTCTTCTCGTG

F

-555598888@C@@C@@@@@@@@C444444@@@@@:40::6465689998@:@@@::4447677544:::@@;@@#######

M Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

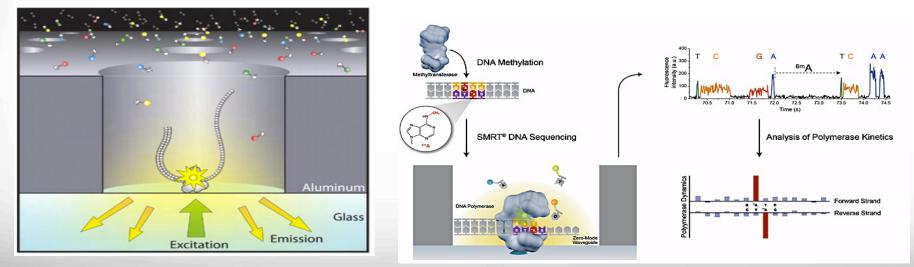
10

Choosing Illumina Sequencer!

11

http://core-genomics.blogspot.com/2016/01/meet-newest-members-of-family-miniseq.html

LONG READS


- Pacific Biosciences (PacBio)
- Oxford Nanopore Technologies MinION

Long reads - PacBio

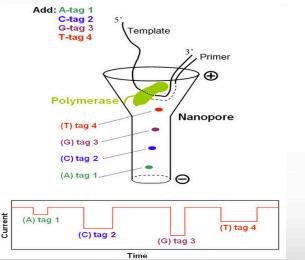
- Single Molecule Real Time Sequencing (SMRT) Methodology
- Fluorescent dyes

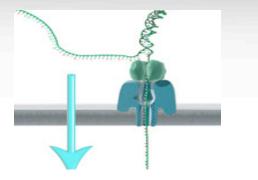
ĀŇ

- Zero Mode Waveguide (ZMW)
- DNA polymerase is immobilized at the bottom of a ZMW

http://www.nature.com/scientificamerican/journal/v294/n1/full/scientificamerican0106-46.html http://science.sciencemag.org/content/323/5910/133.full

PacBio Sequel




~10 GB per SMRT Cell 1M ZMW/SMRT Cell Up 16 SMRT/week 10 hour run time/SMRT Avg. read 10-15kb

~10x jump over RSII

Long reads – Oxford NanoPore

- Oxford Nanopore Technologies
- Nanopore: a small hole (nanometer)
 - used to identify DNA sequence, passing through nanopore
- Single DNA molecule is sequenced

-120

Time in Second

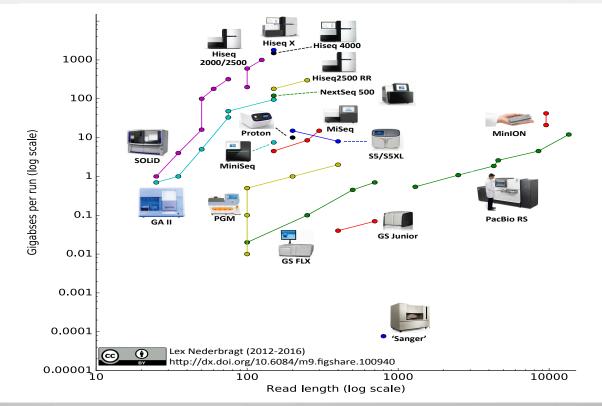
Like electrophoresis, this technique draws DNA toward a positive charge. To get there, the molecule must cross a membrane by going through a pore whose narrowest diameter of 1.5 nanometers will allow only single-stranded DNA to pass [σ]. As the strand transits the pore, nucleotides block the opening momentarily, altering the membrane's electrical conductance, measured in picoamperes (pA). Physical differences between the four base types produce blockades of different degrees and durations (b). A close-up of a blockade event measurement shows a conductance change when a 150-nucleotide strand of a single base type passed through the pore [c].

DNA

Refining this method to improve its resolution to single bases could produce a sequence readout such as the hypothetical example at bottom (d) and yield a sequencing Single-stranded technique capable of reading a whole human genome in just 20 hours without expensive DNA copying steps and chemical reactions.

-15 120 pA 500 microsecond -15 pA Hypothetical readout

http://www.nature.com/scientificamerican/journal/v294/n1/full/scientificamerican0106-46.html http://www.kurzweilai.net/single-molecule-electronic-dna-sequencing#!prettyPhoto



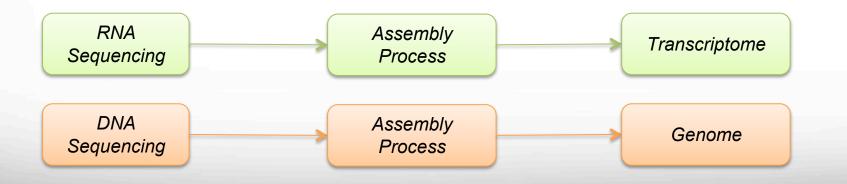
TAMU holds patent Dr. Higgin Bailey TEXAS A&M GRILIFE RESEARCH

NGS Read Specifications

A M

Lex Nederbragt blog: https://flxlexblog.wordpress.com/2016/07/08/developments-in-high-throughput-sequencing-july-2016-edition/

Comparing Sequencing Technologies

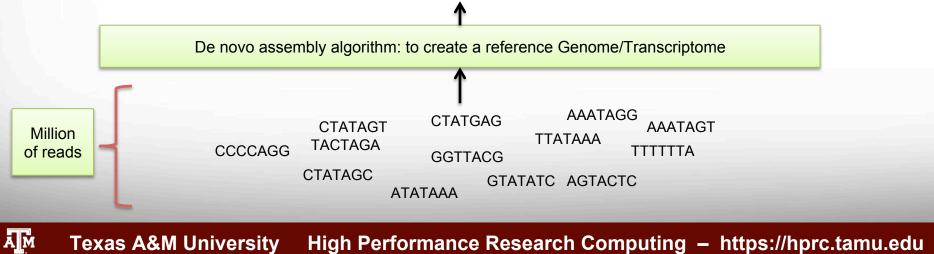

Platform	Read length	Error rates	Technology	Portable?
Illumina	< 400 bp	Low	Sequencing by synthesis	No
PacBio	~ 10-15 Kb	High	SMRT – ZMW	No
Oxford Nanopore Technologies	~ 5-8 Kb	High	Nanopore protein – strand sequencing	Yes

Why assembly?

19

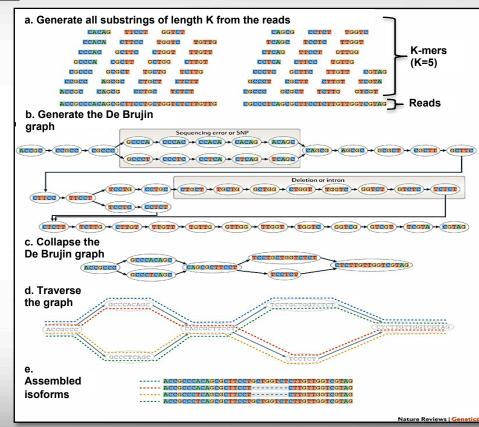
Generating the consensus of transcriptome or genome of non-model species

Reconstructing the genome and transcriptome of non-model species are essential steps in expanding our understanding of the organism and developing therapeutic approaches to fight disease



De novo Assembly

- Pool of reads
- No Reference genome!
- Creating consensus from the reads

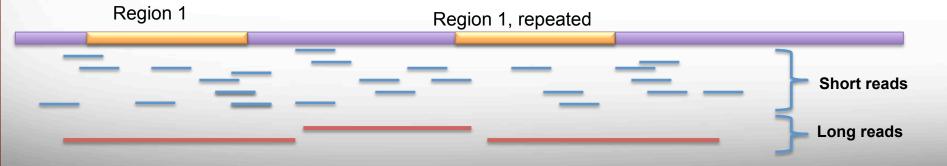

Consensus Genome/Transcriptome

Contig n: ...GATCTACCTATTTTAATCTATCTAGACCCATAAAAAAGTAAAAATTAGTAATTCTTAAGTAATATTAAGTATCGTGG...

De novo Assembly - 2

- Connection reads by finding common sections of kmers
 - Kmers are made from reads!
- Resolving conflicts
- Complicated process!
- Highly computational resource demanding!

De novo Assembly - 3


Reference Genome Generation

- Goal: generating the reference genome for a new species, using the genomic DNA data, generated by NGS/Single Molecule platforms
- Main tool: *de novo* assembly algorithms
- Output: annotated reference genome

De novo Assembly - 4

ĀМ

Sanger	Next Generation Sequencing	
Low coverage depth	High coverage depth	
High cost for large genomes	Relatively low cost, even for large genomes	
Slow	Fast	
Handles repeats well	Need long reads for repeated regions (e.g. PacBio, Illumina Mate- Pair)	

Genome Assembly Tools:

- ALLPATHS
- ALLPATHS-LG (Special recipe: fragments + jumping libraries)
- DISCOVAR de novo
- ABySS
- EULER-SR
- SOAPDenovo
- VCAKE
- Velvet

ĀΜ

- MaSuRCA
- Canu (will cover in practical portion today)
- CLC Bio Genomics Workbench

Transcriptome Assembly Tools:

- SOAPdenovo-Trans
- Trans-ABySS
- Velvet + Oases
- Trinity (will cover in practical portion today)
- Rnnotator
- CLC Bio Genomics Workbench

High Quality Assembly

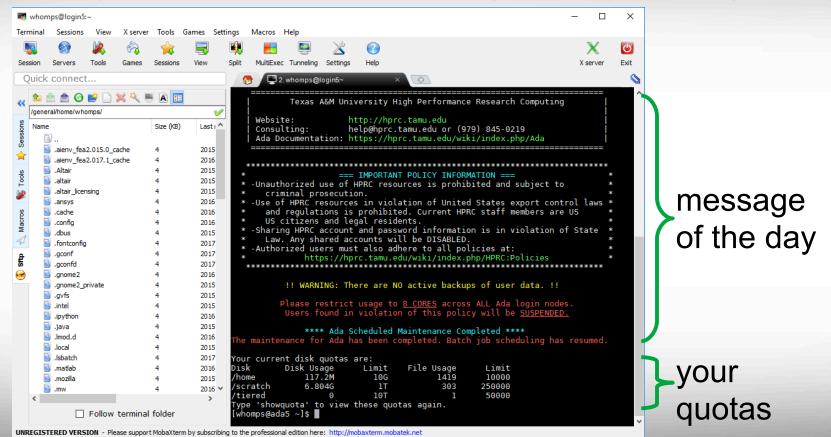
- Hybrid Approach
- High Coverage
- Merging
 - Metassembler

Practical Portion

Logging in to the system

• SSH (secure shell)

 The only program allowed for remote access; encrypted communication; freely available for Linux/Unix and Mac OS X hosts;


• For Microsoft Windows PCs, use MobaXterm

- https://hprc.tamu.edu/wiki/HPRC:MobaXterm
 - You are able to view images and use GUI applications with MobaXterm
- or Putty
 - https://hprc.tamu.edu/wiki/HPRC:Access#Using_PuTTY
 - You can not view images or use GUI applications with PuTTY

Your Login Password

- Both state of Texas law and TAMU regulations prohibit the sharing and/or illegal use of computer passwords and accounts
- Don't write down passwords
- Don't choose easy to guess/crack passwords
- Change passwords frequently

Using SSH - MobaXterm (on Windows)

Texas A&M University

High Performance Research Computing – https://hprc.tamu.edu

Using SSH to Access Ada

ssh user_NetID@ada.tamu.edu

https://hprc.tamu.edu/wiki/Ada:Access

You may see something like the following the first time you connect to the remote machine from your local machine: Host key not found from the list of known hosts. Are you sure you want to continue connecting (yes/no)?

Type yes, hit enter and you will then see the following: Host 'ada.tamu.edu' added to the list of known hosts. user_NetID@ada.tamu.edu's password:

Contact the HPRC Helpdesk

Website:

hprc.tamu.edu

Email:

help@hprc.tamu.edu

Telephone:

(979) 845-0219

Help us, help you -- we need more info

- Which Cluster
- UserID/NetID
- •Job id(s) if any
- Location of your jobfile, input/output files
- •Application used if any
- Module(s) loaded if any
- •Error messages
- •Steps you have taken, so we can reproduce the problem

Second self-organized official Software Carpentry Workshop at TAMU!

- Topics covered: Unix shell, Version Control with Git, R Programming
- Date: February 7-8, 2019, Time: 9:00 AM 5:00 PM
- Instructors: Noushin Ghaffari, Ramalingam Saravanan, David Bapst, and Shichen Wang
- Fee: \$35
- Lunch: provided (the fee includes the lunch, coffee and refreshments for both days)
- Application link: <u>goo.gl/forms/qQSwtO95EVeY007o2</u>
- Workshop webpage: <u>swang8.github.io/2019-01-24-tamu/</u>

Any question? nghaffari@tamu.edu

34