High Performance Research Computing

A Resource for Research and Discovery

Introduction to RNA-Seq data analysis on HPRC

Shichen Wang, PhD
Bioinformatics Scientist
Genomics and Bioinformatics, AgriLife research
High Performance Research Computing

DIVISION OF RESEARCH TEXAS A&M UNIVERSITY

RNA-Seq Overview Reads **CDNA SEQUENCER MRNA** De novo assembly Assign reads to transcripts by aligning reads to reference genome or other alignment-free approaches Count table GENE NAME TREAT_REP1 TREAT_REP2 TREAT_REP3 CONTROL_REP1 CONTROL_REP2 CONTROL_REP3 **GENE0001** 12 13 14 GENE0002 20 17 **GENE0003** 18 10 20 **GENE0004** 11 10 **GENE0005** 20 10 18

11

14

11

20

16

18

17

GENE0006

GENE0007

GENE0008

14

10

20

15

WHAT DOES RNASEQ DATA PROVIDE US?

- Measure gene expression (relatively)
- Annotate transcripts
- Discover novel transcripts/isoforms
- Discover nucleotide variations

RNASEQ EXPERIMENT DESIGN

- Questions often being asked:
 - ▶ How many replicates should I have?
 - How many reads should be generated?
- ▶ WHAT IS YOUR PRIMARY EXPERIMENTAL OBJECTIVE?
 - Detect DEGs
 - Annotation transcripts
 - Detect nucleotide variations

Biological vs Technical Replication

- Biological replicates include multiple samplings within a population
- Technical replicates include multiple prepping and or resequencing the same individual
- Biological replicates generally increase statistical power more than technical replicates
 - Biological variability is generally greater than technical variability
 - Biological replicates contain both biological and technical variability

0

Table 1.1 Recommendations for RNA-seq options based upon experimental objectives.

Criteria	Annotation	Differential Gene Expression
Biological replicates	Not necessary but can be useful	Essential
Coverage across the transcript	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not as important; however the only reads that can be used are those that are uniquely mappable.
Depth of sequencing	High enough to maximize coverage of rare transcripts and transcriptional isoforms	High enough to infer accurrate statistics
Role of sequencing depth	Obtain reads that overlap along the length of the transcript	Get enough counts of each transcript such that statistical inferences can be made
DSN	Useful for removing abundant transcripts so that more reads come from rarer transcripts	Not recommended since it can skew counts
Stranded library prep	Important for de Novo transcript assembly and identifying true anti-sense trancripts	Not generally required especially if there is a reference genome
Long reads (>80 bp)	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not generally required especially if there is a reference genome
Paired-end reads	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not important

http://rnaseq.uoregon.edu

How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?

Nicholas J. Schurch^{1,6}, Pietá Schofield^{1,2,6}, Marek Gierliński^{1,2,6}, Christian Cole^{1,6}, Alexander Sherstnev^{1,6}, Vijender Singh², Nicola Wrobel³, Karim Gharbi³, Gordon G. Simpson⁴, Tom Owen-Hughes², Mark Blaxter³ and Geoffrey J. Barton^{1,2,5}

+ Author Affiliations

Corresponding authors: g.g.simpson@dundee.ac.uk, t.a.owenhughes@dundee.ac.uk, Mark.Blaxter@ed.ac.uk, g.j.barton@dundee.ac.uk

^{←6} These authors contributed equally to this work.

Data analysis on HPRC system

Where to Find NGS Tools

- TAMU HPRC Documentation
 - https://hprc.tamu.edu/wiki/index.php/Ada:Bioinformatics
- Type the following UNIX commands to see which tools are already installed on Ada
 - module avail
 - module spider toolname
 - module key assembly

(not case sensitive, but read entire output)

(some modules may be missed because this searches tool descriptions)

- If you find a tool that you want installed on Ada, send an email with the URL link to: help@hprc.tamu.edu
 - SeqAnswers http://seqanswers.com/wiki/Software/list
 - omictools.com
 - slideshare.net find shared NGS presentations

Finding NGS job template scripts using GCATemplates on Ada

mkdir \$SCRATCH/rnaseq class

cd \$SCRATCH/rnaseq class

module load GCATemplates

gcatemplates

For practice, we will copy a template file

- Select #13 RNA-seq, #1 QC, #1 rnaseqc, #1 two samples
- Final step will save a template job script file to your current working directory
- After you save the template file:

module purge

Genomic Computational Analysis Templates

QC Evaluation

module spider fastqc

- Use FastQC to visualize quality scores
 - Displays quality score distribution of reads
 - Input is a fastq file or files
 - Can disable grouping of sequence regions
 - Will alert you of poor read characteristics
 - Displays a representative sample of the fastq file
 - Can be run as a GUI or a command line interface
- FastQC will process using one CPU core per file
 - If there are 10 fastq files to analyze and 4 cores used
 - 4 files will start processing and 6 will wait in a queue
 - If there is only one fastq file to process then using 10 cores does not speed up the process

QC Quality Trimming

Sequence quality trimming tools

module spider Trimmomatic

- Trimmomatic will maintain paired end read pairing after trimming
- Trim reads based on quality scores
 - Trim the same number of bases from each read or
 - Use a sliding window to calculate average quality at ends of sequences
- Decide if you want to discard reads with Ns
 - some assemblers replace Ns with As or a random base G, C, A or T
- Trim adapter sequences
 - Trimmomatic has a file of Illumina adapter sequences

```
module load Trimmomatic/0.36-Java-1.8.0_92
```

1s \$EBROOTTRIMMOMATIC/adapters/

RNA-SeQC

module spider RNA-SeQC

- Provides alignment metrics & graphs all samples together
 - Yield alignment and duplication rates
 - GC bias
 - rRNA content
 - Regions of alignment (exon, intron, intragenic)
 - continuity of coverage
 - 5'/3' bias and much more ...
- Metrics can help identify sample outliers by comparing metrics of all samples

RNA-SeQC: RNA-seq metrics for quality control and process optimization

DeLuca, et al. <u>Bioinformatics</u>. 2012 Jun 1; 28(11): 1530–1532. Published online 2012 Apr 25. doi: 10.1093/bioinformatics/bts196PMCID: PMC3356847

Mapping RNA-seq Reads to a Reference Assembly

Splice-Aware Aligners for RNA-seq Short Reads

- HISAT2 which supersedes TopHat2
 - O /scratch/datasets/genome_indexes/ucsc/mm10/hisat2 index/
- STAR (on Ada as module STAR-STAR)
 - Uses gene annotations in gtf format
 - can use gffread in Cufflinks module to convert gff3 to gtf
 - supports PacBio but should use non-default settings
 - Bioinfx study: Optimizing STAR aligner for Iso Seq data
- BBMap
 - also supports PacBio and Nanopore
- GMap
 - also supports PacBio and Nanopore

Integrative Genomics Viewer (IGV) Exercise

- IGV is a genome browser with pre-loaded genomes available in which you
 can use to view multiple .bed, .sam and .vcf files.
- Running IGV through portal.hprc.tamu.edu

IGV viewing indexed bam file

RNA-seq for Differential Expression

RNA-seq Sequence Fragment Counting

- Alignment based
 - Non-normalized alignment counts
 - HTSeq-count
 - Normalized (RPKM, FPKM, TPM)
 - eXpress (outputs FPKM)
 - RSEM (isoform/gene level estimates without RPKM or FPKM)
 - Trinity Transcript Quantification
 - A Trinity script can run: Kallisto, RSEM, eXpress, Salmon
- Non-Alignment based
 - Kallisto (pseudoalignment)
 - Salmon (lightweight alignment)
 - Sailfish (k-mer)

RPKM vs FPKM vs TPM

- The number of Reads Per Kilobase of transcript per Million mapped reads.
 - Intended for single end reads
- The number of Fragments Per Kilobase of transcript per Million mapped reads.
 - Intended for paired-end reads
 - If both paired reads align to a transcript then they are counted as one alignment
- Transcripts Per kilobase Million
 - Normalize for gene length first
 - Normalize for sequence depth second

http://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/

Tuxedo Suite

- HISAT2
 - splice aware mapping of RNA-seq reads
 - TopHat (which uses Bowtie2) and HISAT are superseded by HISAT2
- Cufflinks
 - assembles aligned reads into transcripts and estimates their abundances
- Cuffdiff
 - compares RNA-seq abundance (expression) levels of two samples or groups

```
test id gene id gene locus sample 1
                                    sample 2
                                                     value 1 value 2 log2 (fold change)
                                                                                      test stat
                                                                                                  p value q value significant
                                              status
CAWT 00001
           CAWG 00001 -
                          chr 1.1:8373-9093
                                              q1 q2
                                                     OK 111.944 163.869
                                                                             0.549763
                                                                                        0.768107
                                                                                                    0.58795 0.996768
                                                                                                                       no
                         chr 1.1:11447-12425 q1 q2
CAWT 00002
           CAWG 00002 -
                                                     OK 14.5992 30.9037
                                                                             1.08189
                                                                                        1.3841
                                                                                                    0.2921 0.98312
                                                                                                                       no
                          chr 1.1:14130-14451 q1 q2
CAWT 00003
           CAWG 00003 -
                                                     OK 248.323 259.152
                                                                             0.0615814
                                                                                        0.172186
                                                                                                    0.94685 0.996768
                                                                                                                       no
CAWT 00004
           CAWG 00004 -
                          chr 1.1:14890-16045 ql q2 OK 60.9546 86.0009
                                                                             0.496617
                                                                                        0.604904
                                                                                                    0.6204 0.996768
                                                                                                    0.00015 0.0482417
CAWT 01628
           CAWG 01628 -
                          chrl.2:664522-665344 gl g2 OK 3.56447 157.849
                                                                             5.46871
                                                                                        6.64693
                                                                                                                       yes
```

```
p_value = The uncorrected p-value of the test statistic.
q_value = The FDR-adjusted p-value of the test statistic
```


"New Tuxedo" Protocol

Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown

Pertea, et al. Nature Protocols 11,1650–1667 (2016) doi:10.1038/nprot.2016.095

HISAT2 supercedes HISAT

Sailfish

- Alignment-free isoform quantification from RNA-seq data (uses k-mers)
- Requires a set of target transcripts (fasta)
 - From a reference or a de novo assembly
- Requires sequence reads (fasta or fastq)

Name	Length	EffectiveLength	TPM	NumReads
TRINITY_DN30_c0_g1_i1	215	68.4635	236.773	233
TRINITY_DN43_c0_g1_i1	280	102.34	5971.5	8784
TRINITY_DN88_c0_g1_i1	217	69.3036	191.74	191
TRINITY_DN59_c0_g1_i1	393	194.337	4092.64	11432
TRINITY_DN98_c0_g1_i1	205	64.4299	1097.09	1016
TRINITY_DN17_c0_g1_i1	310	122.99	2634.35	4657

R Bioconductor

- Popular R bioconductor packages for RNA-seq
 - CQN Normalization of RNA-seq data
 - edgeR Differential gene expression
 - DESeq, DESeq2 Differential gene expression
 - o cummeRbund analysis/visualization of cufflinks data
- Bioconductor packages can be found in this R version

module load R tamu/3.3.1-intel-2015B-default-mt

RNA-seq for Transcriptome Assembly

RNA-seq Transcriptome Assembly

Assembly with a reference genome

```
module spider Trinity

module spider HISAT2 Cufflinks

module spider Scripture

module spider StringTie
```

de novo assembly without a reference genome

```
module spider Trinity
module spider Oases
```


Running Trinity on Ada

- Trinity uses 100,000s of intermediate files
 - Contact help@hprc.tamu.edu and request a file quota increase before running Trinity
 - Run one Trinity job at a time and check resource usage
 - showquota
 - It is recommended not to run multiple Trinity jobs unless you know memory usage and an estimate of the number of temporary files
 - Trinity creates checkpoints and can be restarted if it stops due to file/disk quota met, out of memory or runtime
 - Checkpoints are not available when running Trinity in Galaxy
 - Checkpoints are not available if you use \$TMPDIR with Trinity
 - need to rsync results from \$TMPDIR at end of job script
 - checkpoints are stored in \$TMPDIR which is deleted after job ends
- See GCATemplates for sample Trinity scripts

Transcriptome Assembly Completeness

The completeness of a transcriptome can be estimated by using a set of highly conserved genes that are common to specific taxonomic groups

- 44 taxonomic groups available
 - aves, bacteria, eukaryota, insecta, vertebrata, ...
- BUSCO uses single-copy genes to access transcriptome assembly and annotation completeness
 - evaluates % complete 'BUSCOs', % fragmented, % missing
 - can run in genome, transcriptome or protein mode
 - module spider BUSCO

Transcriptome Assembly Completeness

BUSCO script (generate_plot.py) can be used to plot multiple BUSCO short summaries to compare different assemblies

Any questions?

DEG Analysis tutorial:

- 1. Quality check: FastQC
- 2. Trim adapters and low quality bases: Trimmomatic
- 3. Alignment to the reference: HISAT2
- 4. Reference guided assembly: cufflinks
- 5. Merge the transcripts: cuffmerge
- 6. Differential expression analysis: edgeR
- 7. Visualize the results: heatmap and volcano plot

HTTP://GALAXYPROJECT.ORG

Data intensive biology for everyone.

<u>Galaxy</u> is an open, web-based platform for data intensive biomedical research. Whether on the <u>free public server</u> or <u>your own instance</u>, you can perform, reproduce, and share complete analyses.

Use Galaxy

Use <u>project's free server</u> or other public servers

Get Galaxy

Install <u>locally</u> or <u>in the cloud</u> or get <u>Galaxy</u> on <u>SlipStream</u>

Learn Galaxy

Screencasts, Galaxy 101, ...

Get Involved

Mailing lists, Tool Shed, wiki

TEXAS A&M HIGH PERFORMANCE RESEARCH COMPUTING

Home User Services Resources Research Policies Events About

https://galaxy-terra.hprc.tamu.edu/bdf

Thanks to Dr. Charles Michael Dickens!

