
High Performance Research Computing | hprc.tamu.edu

Intermediate Linux

10:00 am Sept. 27, 2022
Short Course

1

High Performance Research Computing | hprc.tamu.edu

Overview

● Text Processing
● Text Processing Practice
● Break
● Bash Scripting
● Bash Scripting Practice
● bc
● Break
● Setting Up an Environment

2

High Performance Research Computing | hprc.tamu.edu

Practice Files

● Login to FASTER now

● Change to your SCRATCH directory
○ cd $SCRATCH

● Copy the practice files
○ cp -r /scratch/training/Int_Linux Int_Linux

3

High Performance Research Computing | hprc.tamu.edu

Text Processing
Students will be able to use vi to view, edit and save text files.
Students will also be able to understand common uses of stream
editors, sed, awk, and grep.

4

High Performance Research Computing | hprc.tamu.edu

vi editor
• vi filename # opens (creates) a file using vi
• vi -R filename - opens a file using vi in read-only mode
• view filename - same as vi -R filename

Two modes
• insert mode
 for typing in text
 all keystrokes are interpreted as text
 i one of the commands that initiates insert mode
• command mode
 for navigating the file and editing
 all keystrokes are interpreted as commands
 Esc returns the user to command mode

5

High Performance Research Computing | hprc.tamu.edu

vi editor - Practice

Create a file (choose your own filename) using:
● vi filename

6

High Performance Research Computing | hprc.tamu.edu

vi editor
[user@host ~]$ vi filename

|

~

~

~

"filename"

starts in command mode
press Esc on the keyboard to return to command line mode
Typing :set showmode while in command mode will display in the
lower right hand corner what mode you are in

7

High Performance Research Computing | hprc.tamu.edu

vi commands

To exit a file or save
● ZZ or :wq or :x save the file and exit
● :w filename - save the file with the name filename
● :w! force save
● :q or :q! quit without saving
● :q quits a file when there have been no changes
● :q! quits the file regardless of changes

Try writing something, then close the file you created!

8

High Performance Research Computing | hprc.tamu.edu

Moving around in the file

• h, l (or space), j and k - left, right, down and up

• G move to end of file

• nG go to line n

• ^f (^ = Ctrl-key) Scroll down a full screen

• ^b scroll up a full screen

• 0 (zero) Move to start of current line

• w move forward one word

• b move back one word

• e move to the end of the word

vi commands Open ex01.txt in vi to practice these commands

9

High Performance Research Computing | hprc.tamu.edu

vi commands

Commands that take you into insert mode
○ i insert text to the left of the cursor
○ I insert text at the beginning of the line
○ a insert text to the right of the cursor
○ A insert text at the end of the line
○ o open a line below the cursor
○ O open a line above the cursor
○ R overwrite text to the right of the cursor
○ cw change a word with new text - the cursor must be at the beginning

of the word

10

High Performance Research Computing | hprc.tamu.edu

vi commands - Practice

● Open a new text file with vi.
● Change vi to insert mode and type “Hello World”.
● Then save and exit the file.
● Type ls, do you see the file you created?
● Type more filename, if saved you should see “Hello World”

11

High Performance Research Computing | hprc.tamu.edu

vi commands
Editor commands that keep you in command mode
● x delete a single character at the cursor
● dd delete the entire current a line
● ndd delete n lines
● dw delete a word
● dG delete to the end of the file
● D delete to the end of the line
● ra replace current character with a (a = character, number, etc.)
● u undo last command (only 1 undo on most unix machines. Most new

versions of vi (vim) have multiple undo and redo (Ctrl-r) capability)
● nyy yank n (n is a number) lines to memory
● p (lowercase p) put the yanked lines below the cursor
● P (uppercase P) put the yanked lines above the cursor

12

High Performance Research Computing | hprc.tamu.edu

vi commands
Miscellaneous commands

○ /name search forward for name
○ ?name search backward for name
○ :1,$ s/pattern1/pattern2/g

■ from line 1 to the bottom find and substitute pattern1 for pattern2
■ you could also use :% s/pattern1/pattern2/g

● % and 1,$ mean the entire file
● the g means that all occurrences of pattern1 will be substituted in a line and not just the

first one
○ :e filename exits to the file filename
○ ma marks that line and stores the position in the variable a
○ :'a,. y x yanks the lines between the mark a and where the cursor is (.) and

stores it in the variable x
○ :pu x puts the lines stored in x into the file where the cursor is
○ :r filename read file named filename and insert after current line
○ :set all lists all of the settings
○ :set number displays line numbers

13

High Performance Research Computing | hprc.tamu.edu

vi commands - Practice

● Navigate to Int_Linux in your scratch dir and open the file ex01.txt

● type wc -l to see how many lines are in the file.

● Search forward for the string “Atoms” in the file. What line is it on?

● Use the dd command to delete this line.

● Type G to jump to the end of the file.

● Type gg to jump to the beginning of the file.

● Then quit without saving.

14

High Performance Research Computing | hprc.tamu.edu

GNU sed - Stream editor
A stream editor is used to perform basic transformations on text read from a file or a
pipe.
● man sed

● Useful one-line scripts for sed: http://sed.sourceforge.net/sed1line.txt
● Online manual: https://www.gnu.org/software/sed/manual/

● Common uses
○ sed -n '4,6p' filename

■ print out line 4 to line 6 (without –n, line 4 to 6 will be printed twice)
○ sed '2,4d' filename

■ delete line 2 to line 4
○ sed '3,$d' filename

■ delete line 3 to the last line of the file

15

man displays user manual information about commands

http://sed.sourceforge.net/sed1line.txt
https://www.gnu.org/software/sed/manual/

High Performance Research Computing | hprc.tamu.edu

GNU sed - Stream editor
● s substitute

○ sed 's/pattern1/pattern2/g' filename
■ find pattern1 and replace it with pattern2, output is set to stdout

○ sed 's/pattern1/pattern2/g' filename > filename2
■ output is set to filename2

○ sed –i 's/pattern1/pattern2/g' filename
■ modifies the file in-place (changes the original file)

○ sed 's/^/pattern1/' filename

■ insert pattern1 at the beginning of each line of a file

○ sed 's/$/pattern1/' filename

■ insert pattern1 at the end of each line of a file

16

High Performance Research Computing | hprc.tamu.edu

sed - Practice

● In this practice we will use the file ex02.txt.
● Make the following changes to the text file using sed commands.
● cp ex02.txt tmp.txt create a copy of the file to work on.
● Replace all instances of “vegetables“ with “cheese” even if it appears

more than once in a line.
● Delete the 1st line of the file.
● Delete the now 2nd line of the file.
● Delete the now fourth line of the file.
● Print lines 1 to 4 and save to a file output.txt.

17

High Performance Research Computing | hprc.tamu.edu

GNU Awk
awk is used to search files for lines (or other units of text) that contain certain
patterns and then do something (print, manipulate, etc).
awk options '/search pattern/ {action}' input-file > output-file

• Delimiters (Field Separator, FS)
• Default is white space

• Search patterns
• awk '/pattern/' filename

• Variables
• fields are stored in variables based on the FS
• $0 the entire line
• $1 1st field
• $2 2nd field

peach fruit 8
tomato vegetable 5
zucchini vegetable 4

$1 $2 $3

shopping_list.txt

18

High Performance Research Computing | hprc.tamu.edu

GNU Awk
• Variables

• NR number of records
• NF Number of Fields in a record
• RS Specifies the record separator

• Print statement
• awk '/pattern/ {print $0}' filename
• awk '/pattern/ {print $1 "," $2}' filename>outputfilename.txt

• printf statement for more control over the print format
• https://www.gnu.org/software/gawk/manual/html_node/Printf-Examples.html

• Pre-processing/Post-processing

• BEGIN
awk 'BEGIN {print "Shopping List"} { print $1, $2 }' sample.txt

• END
awk 'END { print NR }' sample.txt

• FS Specifies the field separator

• OFS Specifies the Output field separator

• ORS Specifies the Output record separator

19

https://www.gnu.org/software/gawk/manual/html_node/Printf-Examples.html

High Performance Research Computing | hprc.tamu.edu

GNU AWK - Practice

● Print the 3rd column of the tmp.txt file created during the last practice.
● What does it say?

20

High Performance Research Computing | hprc.tamu.edu

Searching File Contents - grep
grep search-pattern filename - searches the file filename for the pattern search-pattern and shows
the results on the screen (prints the results to standard out).

○ grep Energy run1.out
● searches the file run1.out for the word Energy
● grep is case sensitive unless you use the -i flag

○ grep Energy *.out
● searches all files in that end in .out

○ grep "Total Energy" */*.out
● You must use quotes when you have blank spaces. This example

searches for Total Energy in every file that ends in .out in each directory
of the current directory

○ grep –R "Total Energy" Project1
● Searches recursively all files under Project1 for the pattern Total Energy

21

High Performance Research Computing | hprc.tamu.edu

Searching File Contents - grep

● grep -A N 'search' filename
○ Outputs N lines after each line containing the search term.

● grep -B N 'search' filename
○ Outputs N lines before each line containing the search term.

● grep -v 'search' filename
○ Outputs lines that do not contain the search term.

22

High Performance Research Computing | hprc.tamu.edu

Searching File Contents - egrep

 egrep 'pattern1|pattern2|etc' filename
○ searches the file filename for all patterns (pattern1, pattern2, etc) and prints the

results to the screen.
○ The | character is called a pipe and is normally located above the return key on the

keyboard.
○ egrep 'Energy|Enthalpy' *.out

● searches for the word Energy or Enthalpy in every file that ends in
.out in the current directory.

23

High Performance Research Computing | hprc.tamu.edu

grep & egrep Hands on Practice

● Use grep to count the number of lines containing either 'min' or 'max'
in the file ex03.txt.

● Using only grep, print only the line after the line containing ‘love’ in the
file ex02.txt

24

High Performance Research Computing | hprc.tamu.edu 25

10 Minute Break

High Performance Research Computing | hprc.tamu.edu

Bash Scripting
Learning Objective:
Understand conditions, loops and write bash scripts for simple
tasks

26

High Performance Research Computing | hprc.tamu.edu

Basic Shell Scripting
A shell script is a text file that contains one or more linux commands that can be run as a
single batch of commands.
Shell scripts can be used to automate routine tasks.
It is good practice to name shell scripts with: .sh

#!/bin/bash
=========== script header
Description, Revision history, License

VARIABLE ASSIGNMENT
CURRENTUSER=$(whoami)
SHOW MESSAGES
grep $CURRENTUSER /etc/passwd

shebang, indicates the shell

The shell ignores blank and
commented-out lines.
It is a good practice for developers to
include info about the script in the
header.

To store the output of a command in a
variable, use MYVAR=$(command)

body

To run the script
• run with bash script.sh
• add executable permission to the script file (chmod u+x script.sh) and run with ./script.sh

27

High Performance Research Computing | hprc.tamu.edu

Basic Constructs for Bash Scripting
• Conditionals:

If something is true do something and if it is false, do something else

if < some test >
then
 commands
elif < some test >
then
 other commands
else
 commands
 fi

#!/bin/bash
#

i=1
if [$i –eq 1] ; then
 echo i is equal to 1
 else
 echo i does not equal 1
 echo i equals $i
 fi

28

https://www.gnu.org/software/bash/manual/html_node/Conditional-Constructs.html

High Performance Research Computing | hprc.tamu.edu

Integer Comparison Operators
-eq is equal to if ["$a" -eq "$b"]

-ne is not equal to if ["$a" -ne "$b"]

-gt is greater than if ["$a" -gt "$b"]

-ge is greater than or equal to if ["$a" -ge "$b"]

-lt is less than if ["$a" -lt "$b"]

-le is less than or equal to if ["$a" -le "$b"]

< is less than
(within double parentheses)

(("$a" < "$b"))

<= is less than or equal to
(within double parentheses)

(("$a" <= "$b"))

> is greater than
(within double parentheses)

(("$a" > "$b"))

>= is greater than or equal to
(within double parentheses)

(("$a" >= "$b"))

29

High Performance Research Computing | hprc.tamu.edu

String Comparison Operator
== True if $a starts with an "z" (pattern matching). [[$a == z*]]

True if $a is equal to z* (literal matching). [[$a == "z*"]]

File globbing and word splitting take place. [$a == z*]

True if $a is equal to z* (literal matching). ["$a" == "z*"]

!= is not equal to ["$a" != "$b"]

< is less than, in ASCII alphabetical order
if [["$a" < "$b"]] or

if ["$a" \< "$b"]

> is greater than, in ASCII alphabetical order
if [["$a" > "$b"]] or

if ["$a" \> "$b"]

-z string is null, that is, has zero length if [-z "$s"]

-n string is not null if [-n "$s"]

30

High Performance Research Computing | hprc.tamu.edu

Basic Constructs for Bash Scripting

Case Constructs #!/bin/bash
#
month='June'
case $month in
 Jan)
 mnum='01'
 ;;
 Feb)
 mnum='02'
 ;;
 ….
 Dec)
 mnum ='12'
 ;;
esac

case var in
 case1)
 <commands>
 ;;
 case2)
 <commands>
 ;;
*)
 commands;;
esac

* symbol defines the default case, usually in the final pattern.

31

https://www.gnu.org/software/bash/manual/html_node/Looping-Constructs.html#Lhttps://www.gnu.org/software/bash/manual/html_node/Conditional-Constructs.htmlooping-Constructs

High Performance Research Computing | hprc.tamu.edu

Practice: Conditionals
● Create a shell script that checks if the current day on the system belongs to the

first, middle or last part of the month.
● If it is within the first 10 days of a month, print (echo) "We are within the first 10

days of the month."
● Otherwise, check if it is less than or equal to 20 and echo "We are within the

middle 10 days of the month."
● If none of the previous conditions are met, return "We are within the last few

days of the month."
● Hint: To obtain current day of month, use the command date +%d (there is a

space before +)

32

High Performance Research Computing | hprc.tamu.edu

Bash Scripts with input outside the script
• Command line arguments

• Read input during script execution

• Accept data that has been redirected into the Bash script via STDIN

#!/bin/bash
shell script exercise
my_name=$1
echo "Howdy $my_name"

[user@host ~]bash my_name.sh

Amy

[user@host ~]Howdy Amy

#!/bin/bash
Ask the user for emails
read -p "Username: " uservar
read -sp "Password(hidden): " passvar
echo
echo Thankyou $uservar we now have your info

[user@host ~]bash info.sh
Name: Amy
Password(hidden):
[user@host ~]Thankyou Amy
we now have your info

33

High Performance Research Computing | hprc.tamu.edu

Basic Constructs for Bash Scripting

Loops: Do something over and over until a

specific condition changes and then stop

#!/bin/bash

#

i=1

while [$i –le 100] ; do

 echo i equals $i

 ((i++))

 done

#!/bin/bash

for file in *.log ; do

 head –n1 $file

 done

while [<some test>] ; do
 <commands>
 done

for var in <list> ; do
 <commands>
 done

34

https://www.gnu.org/software/bash/manual/html_node/Looping-Constructs.html#Looping-Constructs

High Performance Research Computing | hprc.tamu.edu

Practice: Loops

• Write a simple number-guessing game in a script called guess.sh. When the
script is launched, a random number between 1 and 10 is generated and
stored in the variable RANDOMNUM. The script then will expect input from
the user. If the guess is incorrect, it will continue to ask the user for an input
until the user guesses the number correctly. (Hint: to generate a random
number between 1 and 10, use the command shuf –i1-10 –n1)

• Change the permissions on files end with .sh to 755 using a for loop

35

High Performance Research Computing | hprc.tamu.edu

bc - Basic Calculator

● bc is a command line calculator which can be useful for quick
calculations.
○ Allows for arithmetic operations in bash scripts.

● Addition/subtraction Example:
○ echo "13+3" | bc

● Exponential Example:
○ echo "10^3" | bc

● Assign value of calculation to variable example:
○ x=`echo "12+5" | bc`
○ echo $x

● Variables can be used in calculations:
○ echo "$x+100" | bc
○ What value do you get?

36

High Performance Research Computing | hprc.tamu.edu

bc - Practice

● Create a bash script that defines a variable i as 1.
● Then add a loop that adds (i+2) to i, 12 times.

○ Print i each step of the loop.
● What is the final number?

37

High Performance Research Computing | hprc.tamu.edu 38

10 Minute Break

High Performance Research Computing | hprc.tamu.edu

Customizing the Environment

39

High Performance Research Computing | hprc.tamu.edu

Bash Environment Variables
● Environment variables store information that is used across different

processes in a Linux system.

● Use all caps for Bash Environment variable. A-Z 0-9 _
● Use lowercase for the variables that you create. a-z 0-9 _

○ HOME Pathname of current user’s home directory
○ PATH The search path for commands.

● Use the echo command to see the contents of a variable

echo $HOME

40

High Performance Research Computing | hprc.tamu.edu

The Search PATH
● The shell uses the PATH environment variable to locate commands typed at the

command line
● The value of PATH is a colon separated list of full directory names
● The PATH is searched from left to right. If the command is not found in any of the listed

directories, the shell returns an error message
● If multiple commands with the same name exist in more than one location, the first

instance found according to the PATH variable will be executed.

● Add a directory to the PATH for the current Linux session

export PATH=$PATH:/home/netid/bin

/usr/lib64/qt-3.3/bin:/sw/local/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/usr/
lpp/mmfs/bin:/home/netid/.local/bin

echo $PATH

41

High Performance Research Computing | hprc.tamu.edu

Customizing the Environment

Two important files for customizing your Bash Shell environment

● .bashrc (pronounced dot bashrc)

○ contains aliases, shell variables, paths, etc.

○ executed (sourced) upon starting a non-login shell.

● .bash_profile (dot bash_profile)

○ also can contain aliases, shell variables, paths, etc

○ normally used for terminal settings

○ executed (sourced) upon login

○ if .bash_profile doesn't exist, the system looks for .profile (dot profile)

● . .bashrc (or source .bashrc)

○ Executes the commands in the .bashrc file

42

High Performance Research Computing | hprc.tamu.edu

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs
PATH=$PATH:$HOME/.local/bin:$HOME/bin
export PATH

Personal aliases
alias h="history|more"
alias m="more"

User specific functions
function cc() { awk -f cc.awk "$@".log>"$@".cc ; }

.bash_profile file contents

43

A line that begins with a # is a comment

Enable settings in .bashrc

Syntax to set a global variable:
export var_name=value

Specify PATH for all sessions

Add personal aliases

If you type cc test at the prompt, the
following command will be executed:
awk -f cc.awk test.log > test.cc

Syntax to create a function:
function name() { command ; }

High Performance Research Computing | hprc.tamu.edu

Practice 4: Alias and $PATH

● Add a new alias in your .bash_profile under your home directory named simple that
executes the command: echo I succeeded in creating a simple alias

● Activate your new alias
● Type simple at the prompt to use your new alias
● Make a directory named myapps in your home directory
● Create a file (your choice of a name) in myapps with the following content:

○ echo I succeeded in adding myapps to my path
● Change the permissions of filename to allow execution (replace filename with the name that

you used
● Run filename by typing filename (you should get an error message)
● Add myapps directory to your PATH with export in your current session
● Run filename by typing: filename

44

High Performance Research Computing | hprc.tamu.edu

Solution: Alias and $PATH

● Add a new alias in your .bash_profile file named simple that executes the command:
echo I succeeded in created a simple alias

● active your new alias

● Type simple at the prompt to use your new alias

● Make a directory named myapps in your home directory

● Create a file (your choice of a name) in myapps with the following content:
○ echo I succeeded in adding myapps to my path

45

. .bash_profile

cd myapps
echo "echo I succeeded in adding my apps to my path" >> filename

echo 'alias simple="echo I succeeded in creating a simple alias" '>> .bash_profile

simple

cd
mkdir myapps

High Performance Research Computing | hprc.tamu.edu

Solution: Alias and $PATH

● Change the permissions of filename to allow execution (replace filename with the name
that you used)

● Run filename by typing filename (you should get an error message)

● Add myapps directory to your PATH with export in your current session

● Run filename by typing: filename

46

filename

export PATH=$PATH:/root/myapps/

chmod u+x filename

bash: filename: command not found

filename

High Performance Research Computing | hprc.tamu.edu

https://hprc.tamu.edu

HPRC Helpdesk:

help@hprc.tamu.edu
Phone: 979-845-0219

Help us help you. Please include details in your request for support, such as, Cluster
(Faster, Grace, Terra, ViDaL), NetID (UserID), Job information (Job id(s), Location of your
jobfile, input/output files, Application, Module(s) loaded, Error messages, etc), and
Steps you have taken, so we can reproduce the problem.

47

https://hprc.tamu.edu/

