HIGH PERFORMANCE RESEARCH COMPUTING

Micro-credentials in Research Computing

09/30/2022

High Performance Research Computing DIVISION OF RESEARCH

Outline

- Overview of Microcredentials
- Details about Specific Courses
- Demonstrations of Online Course Elements

Overview of Microcredentials

Background

- The High Performance Research Computing Group has many years of experience teaching computer skills.
 - Short courses
 - Workshops
 - Summer Camps
 - 1-on-1 User Support
- We are excited to announce that we are ready to take our expertise to the next level.

Short Courses

- Short courses provide small-scale learning opportunities targeting specific skills.
- Short courses fill gaps in coursework for traditionally non-computing degree programs.
- Online, asynchronous courses developed with support from Texas A&M Engineering Studio for Advanced Instruction and Learning (eSAIL).

TEXAS A&M UNIVERSITY

Engineering Studio for Advanced Instruction & Learning

Research Skills

- Exercises and topics designed for researchers
 E.g., graduate students
- Coding skills for specific disciplines and purposes
- Training in standard workflows and common practices
 - Especially useful for High Performance Computing

Not just another generic tutorial!

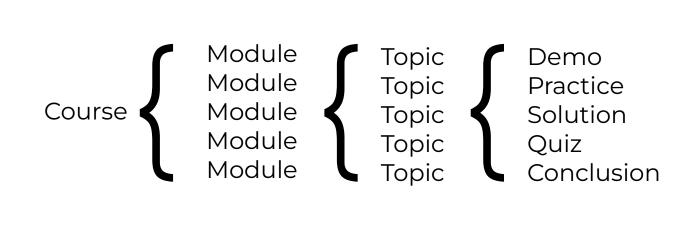
Microcredentials

- Microcredentials are rewards for completion of small-scale learning goals, recognized by academia and industry.
- Supported by Texas A&M Engineering Experiment Station Education Generations (TEES EDGE)
- This program is part of the professional and continuing education credit system.
 - Outside the university course credit system

Audience

This program will eventually be publicly available
 Currently: only TAMU members, by invitation

We invite you to help us test our courses!


Canvas Learning Management System

A M

Online Course Structure

Online Courses are organized hierarchically.

Example Course Hierarchy

ĀМ

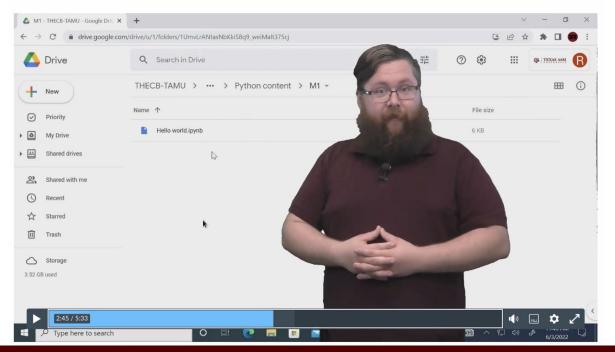
Home

Modules

Grades

Collaborations

	An Introduction to Artificial Intelligence and Machine Learning	
liti	M1T1 - What is Artificial Intelligence & Machine Learning	
-lii	M1T2 - Types of Machine Learning Techniques	
×	M1. Quiz	(


Demo, Practice, Solution

- Each Topic has a cadence of course materials
 - Demo (a video lecture) 5-10 minutes
 - Practice 10-20 minutes
 - Solution (a video lecture) 5-10 minutes
- The student stays maximally engaged with minimal wait between activities.

Example Demo Video

A M

M1T2 - Getting Started With Jupyter Notebook

Quizzes for Completion

- Each module has at least one quiz.
 - "about 5" questions selected at random from a pool of questions.
 - Retries are allowed, but the questions will vary.
- Passing the module quiz is required to proceed to the next module.
- Some courses also have a final quiz.
- Passing all quizzes (≥ 80%) is required to earn your micro-certificate.

Table of Courses (1/2)

Theme	Course Title	CIP CODE(s)	Duration	Delivery Mode
Cybersecurity	Fundamentals of Cybersecurity	11.1003	0.3 PDU	Asynchronous
	Fundamentals of Python	11.0201	1 PDU	Both
	Intermediate Python for Data Science	11.0202, 30.71	1 PDU	Both
Coding	Advanced Python for Data Science	11.0202, 30.71	0.5 PDU	Both
Counig	Fundamentals R Programming	11.0201	1 PDU	Both
	Intermediate R Programming	11.0202	1 PDU	Both
	GPU Programming with CUDA	30.3001	0.3 PDU	Live
	Fundamentals of Artificial Intelligence and Machine Learning	11.0102	0.3 PDU	Both
A 1/N #1	Introduction to Deep Learning with TensorFlow	11.0804, 11.0202	0.3 PDU	Both
AI/ML	Introduction to Deep Learning with PyTorch	11.0804, 11.0202	0.3 PDU	Both
	Using Scikit-Learn for Artificial Intelligence and Machine Learning	11.0804, 11.0104, 11.0202	0.3 PDU	Both

Table of Courses (2/2)

ĀМ

Theme	Course Title	CIP CODE(s)	Duration	Delivery Mode
	RNA-seq and Differential Expression	11.0104, 11.0401, 26.1103	0.3 PDU	Both
Bioinformatics	Short Variant Discovery	11.0104, 11.0401, 26.1103	0.3 PDU	Both
Bioinformatics	Metagenomics	11.0104, 11.0401, 26.1103	0.3 PDU	Both
	ChIP-seq	11.0104, 11.0401, 26.1103	0.3 PDU	Both
Linur	Fundamentals of Linux	11.0201	0.3 PDU	Both
Linux	Linux for Administrators	11.1006, 11.1001	0.3 PDU	Live
	Job Scheduling with SLURM	11.0103	0.3 PDU	Live
	Containers and Orchestration	11.0103	0.3 PDU	Live
Cloud Computing	Introduction to Cloud and Cluster Computing	11.0103	0.3 PDU	Live
	Parallel Computing Using OpenMP	11.0201	0.3 PDU	Asynchronous
	Parallel Computing Using MPI	11.0201	0.3 PDU	Asynchronous

Stackable Courses

- Some short courses have prerequisites
- Stack microcredentials to build your own program

Example. Six Microcredentials for "High Performance Computing Machine Learning"			
1	Fundamentals of Python		
2	Intermediate Python for Data Science		
3	Fundamentals of Artificial Intelligence and Machine Learning		
4	Introduction to Deep Learning with PyTorch		
5	Fundamentals of Linux		
6	Job Scheduling with SLURM		

Details about Specific Courses

Cybersecurity

One course:

• Fundamentals of Cybersecurity

Fundamentals of Cybersecurity

- This course covers fundamental concepts in cybersecurity
- M1 Introduction and Security Trends
 - The security problem
 - Threats to security
 - Attributes of actors
 - Security trends
 - Targets and attacks
 - Approaches to cybersecurity

Fundamentals of Cybersecurity

- M2 General Security Concepts
 - Security basics
 - Security tenets
 - Security approaches
 - Security principes
 - Security models
- M3 The Role of People in Security
 - Social engineering
 - Poor security practices
 - People as a security tool

Fundamentals of Cybersecurity

- M4 Types of Attacks and Malicious Software
 - Avenues of Attack
 - Malware
 - Attacking Computer Systems
 - Advanced Persistent Threats
 - Tools
 - Auditing

Python Programming

- Three courses:
 - Fundamentals of Python
 - Intermediate Python for Data Science
 - Advanced Python for Data Science
- Each course is a *prerequisite* for the next.
- Learning takes place using the Google Colab integrated development environment.
- Topics and exercises are selected to be relevant for scientific research applications.

Google Colaboratory

АМ

C	File Edit View Insert R	Help			🕞 Share 🏾 🎝	8
⊨	Table of contents	+ Code + Text	scopy to Drive	Connect	- Editing	^
Q { <i>x</i> }	Getting started Data science Machine learning More Resources Featured examples	Welcome to Colab! If you're already familiar with Colab, check out this video to learn about interactive tab executed code history view, and the command palette.			active tables, the	s, the
<>	■ Section		3 Cool Google Colab Features			

Fundamentals of Python

- 10 hours
- This course covers the most important core components of Python programming at the introductory level.
- Students will learn fundamental programming concepts such as variables, data structures, flow control, and object-oriented programming.

Fundamentals of Python

- Using Google Colaboratory
- Variables
- Data Types
- User Input
- Operations
- Control structures
- Errors and Files
- Lists

Ā

- Dictionaries
- Classes
- Modules

Intermediate Python for Data Science

- 10 hours
- This course covers a selection of scientific programming tools commonly used in Python programming at the intermediate level.
- Students will learn research techniques such as manipulating and visualizing data, exploring functions, modeling, and retrieving data from the internet.
- Prerequisite: Fundamentals of Python

Intermediate Python for Data Science

- Arrays with NumPy
- Plotting with Matplotlib
- Mathematics with SciPy
- Data Tools with Pandas
- Web Scraping

Advanced Python for Data Science

- 3 hours
- This course covers a selection of scientific programming tools commonly used in Python programming at the advanced level.
- Students will learn research techniques such as handling multidimensional data, and parallelization.
- Prerequisite: Intermediate Python for Data Science

Advanced Python for Data Science

- Arrays with Xarray
- Parallelization with Dask

Artificial Intelligence and Machine Learning

- Four courses:
 - Fundamentals of Artificial Intelligence and Machine Learning
 - Using Scikit-Learn for Artificial Intelligence and Machine Learning
 - Introduction to Deep Learning with TensorFlow
 - Introduction to Deep Learning with PyTorch
- The four courses are *independent* of each other.
- *Recommended* prerequisite: Intermediate Python
- Learning takes place using the Google Colab integrated development environment.

Fundamentals of Artificial Intelligence and Machine Learning

- Introduction to AI/ML
 - What is AI/ML and their Relationship
 - AI and ML Description
 - Relationships
 - Terminology
 - Data Formats
 - Types of Data
 - Labeled Data
 - Unlabeled Data
 - What is training?
 - What is testing?
 - Common types of Learning

Fundamentals of Artificial Intelligence and Machine Learning

- Types of ML techniques
 - Supervised learning
 - Regression
 - Classification
 - Unsupervised learning
 - Clustering
- Data Exploration
 - Data Manipulation with Pandas
 - Demo
 - Practice
 - Data Visualization with Matplotlib
 - Demo
 - Practice

Fundamentals of Artificial Intelligence and Machine Learning

- Application of ML techniques
 - Demo 1: Predict House Prices
 - Practice 1: Linear Regression
 - Demo 2: Classify Handwritten Digits
 - Practice 2: Classification
 - Demo 3: Build a Clustering Model
 - Practice 3: Clustering
- Final Assessment

Using SciKit-learn for Artificial Intelligence and Machine Learning

- Introduction to ML Algorithms
 - Linear Regression
 - Guided Practice
 - Logistic Regression
 - Guided Practice
 - Support Vector Machine
 - Guided Practice
 - K-Means Clustering
 - Guided Practice

Introduction to Deep Learning with TensorFlow

- Overview of AI/ML/DL
 - What is Deep Learning and Its Advantages
 - Learning Principle of DL
 - Convolution
 - Pooling
 - Convolutional Neural Network (CNN)
- TensorFlow
 - TensorFlow Introduction
 - TensorFlow Keras API
 - Demo 1: Get Started with TensorFlow
 - Demo 2: Classify Handwritten Digits with TensorFlow

Introduction to Deep Learning with PyTorch

- Overview of AI/ML/DL
 - What is Deep Learning and Its Advantages
 - Learning Principle of DL
 - \circ Convolution
 - Pooling
 - Convolutional Neural Network (CNN)
- PyTorch
 - PyTorch Introduction
 - Major Components
 - Demo 1: Get Started with PyTorch
 - Demo 2: Classify Fashion MNIST with PyTorch

R Programming

- Two courses:
- 1. Fundamentals of R Programming
- 2. Intermediate R Programming
- The first is a *prerequisite* for the second.

Fundamentals of R Programming

- 6 hours
- RStudio
- Topics Covered:
 - Data types
 - Variables
 - Built-in Functions
 - Vectors
 - Loops

Ā M

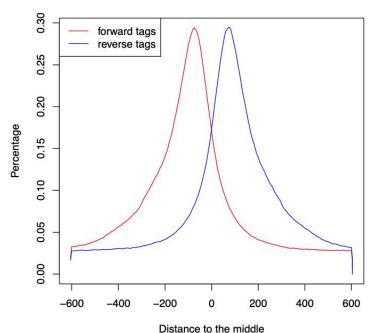
Fundamentals of R Programming Texas A&M HPRC B as a calculator	Vectors in R Vectors are one of the most fundamental data structures in R. They are a data object that contains a collection of elements of the same type. Here are four of the main vector types in R:		
Dete times	Туре		Examples
Data types	logical	TRUE, FALSE	
Data types and math	integer	1L, 23L	
Converting data types	numeric	1.5, 23	
Variables	character	"Texas A&M"	
Built-in Functions	Vectors, unlike lists, must contain matching element types.		
Vectors in R	Creating vectors in R Use the colon operator : to create a sequence:		
Vector arithmetic			
Selecting elements from a vector	Code Start Over 1 V1 <- 1_6		► Run Code
For Loops	2 print(V1) 3 class(V1)		
Iterating through vectors	Use the function seq() to	o create a vector:	
Nested for loops	Fill in the s to complete the	code.	
While loops	Code Start Over 1 V2 <(4.5, 10.5,	hv - 1)	Run Code
Start Over	2 print(V2) 3(V2)	57 = 1 7	

Intermediate R Programming

- 6 hours
- RStudio

Ā M

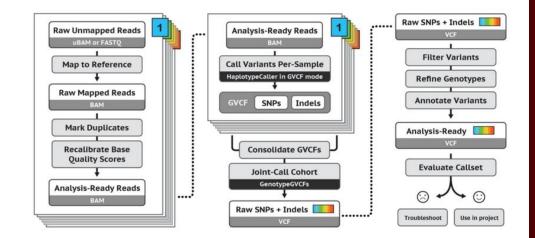
- Topics Covered:
 - Matrices
 - Factors
 - Data frames
 - Base plotting
 - o ggplot2
 - User-created functions


Intermediate R	Matrices		
Programming	In R, a matrix is a group of elements of the same data type (just like in vectors) arranged into a set number of rows and		
Texas A&M HPRC	columns. The data types can be numeric, character, Of logical.		
Matrices	The matrix() function allows us to create a matrix of numbers so we can begin to learn how to work with matrices in R. In the code chunk below, we create a matrix using a simple range of numbers.		
Math with Matrices	Code 🕃 Start Over		
Factors	<pre>1 hew_matrix <- matrix(1:12, byrow = TRUE, nrow = 6) 2 print(new_matrix)</pre>		
Data Frames	3		
Creating data frames in R	Independent Exercise		
Subsetting Data Frames	In the code chunk below, create a matrix named my_matrix using the matrix() function. Have the numbers range fro 13 to 24, be arranged in 4 rows, and set byrow = FALSE. Print the matrix after you create it.		
Re-ordering Data Frames	Code 🛿 Start Over		
Factors in Data Frames	1 2		
Base Plotting Functions in R	3		
Introduction to ggplot2	Copy your code from the code chunk above and change the range of numbers to 12 to 24. How does R handle matrix generation when the specified range is not divisible by the number of rows requested?		
Aesthetics in ggplot2	Code Start Over		
Plot titles and labels	1		
Plotting Multiple Layers and Variables	2 3		
Histograms with ggplot	Independent Exercise		
User-created Functions	We can also use the matrix() function to turn our own vectors into a matrix. The vectors below represent the GDP (in		
Start Over	trillions), GDP growth (%), Population, and GDP per capita of several countries. Combine these vectors into a single vector (hint: vou'll need to use or) for this) and then convert it to a matrix named coppercountry.		

Biology Applications

- Four courses:
 - Introduction to ChIP-seq
 - Short Variant Discovery
 - Introduction to Metagenomics
 - RNA-seq and Differential Expression
- These four courses are *independent* of each other

Introduction to ChIP-seq


- 3 hours
- ChIP-seq experiment overview
- Commonly used software
- Bioinformatics on the Grace Cluster
- Full ChIP-seq pipeline
 - Library QC and Trimming
 - Read mapping
 - ChIP-QC
 - Peak calling

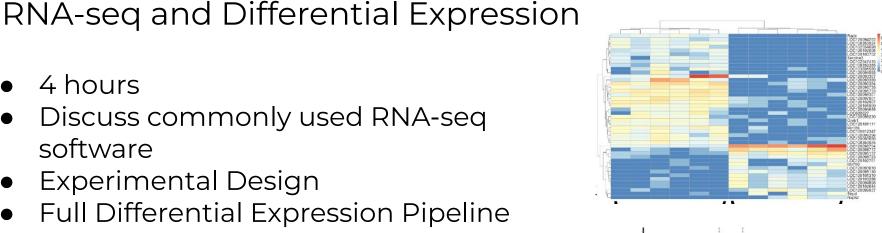
Peak Model

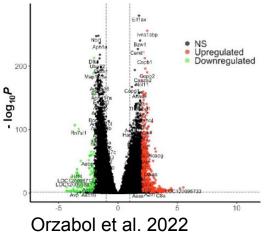
Short Variant Discovery

- 5 hours
- Commonly used software
- Bioinformatics on the Grace cluster
- Step-by-step through GATK
 - Library QC and Trimming
 - Alignment and processing
 - Per-sample variant calling
 - Cohort sample calling
 - Variant filtering

https://gatk.broadinstitute.org/hc/en-us/articles/36003 5535932-Germline-short-variant-discovery-SNPs-Ind els-

Introduction to Metagenomics


- 3 hours
- Metagenomics sequencing strategies
- Commonly used software
- Full pipeline for marker gene analysis (16s) with QIIME2
 - QIIME2 terminology/format
 - Importing data
 - Denoising and filtering
 - Diversity analyses
 - Taxonomic classification



https://giime2.org/

4 hours

- Discuss commonly used RNA-seq software
- Experimental Design
- Full Differential Expression Pipeline
 - Illumina library processing Ο
 - Short-read mapping Ο
 - Count generation Ο
 - Differential expression analysis in R Ο
 - Data visualization in R \bigcirc

Demonstrations of Online Course Elements

time permitting

Acknowledgements

This work was supported by the

- National Science Foundation (NSF) award number 1925764, "CC* Cyberteam: SWEETER"
- NSF award number 2019129, "MRI: FASTER"
- NSF award number 1730695, "CyberTraining: CIP: CiSE-ProS: Cyberinfrastructure Security Education for Professionals and Students"
- NSF award number 2019136, "CC* BRICCs: Building Research Innovation at Community Colleges"
- NSF award number 1829799, "Cybertraining: CMS3"
- NSF award number 2112356, "ACES Accelerating Computing for Emerging Sciences"

https://hprc.tamu.edu

HPRC Helpdesk:

help@hprc.tamu.edu Phone: 979-845-0219

Help us help you. Please include details in your request for support, such as, Cluster (Faster, Grace, Terra, ViDaL), NetID (UserID), Job information (Job id(s), Location of your jobfile, input/output files, Application, Module(s) loaded, Error messages, etc), and Steps you have taken, so we can reproduce the problem.

