Things to do while you are waiting

- Course slides are available at: <u>hprc.tamu.edu/training/aces_containers_techlab.html</u>
- Log into TAMU VPN (if you're off campus)
- Get ready to launch a terminal on the FASTER cluster for interactive exercises (ask if you don't know how).

HIGH PERFORMANCE RESEARCH COMPUTING

Introduction to Containers Tech Lab

featuring Charliecloud on the FASTER cluster

an HPRC + LANL Training Collaboration

February 14, 2023

High Performance Research Computing DIVISION OF RESEARCH

Spring 2023

Outline

- Connecting to the FASTER Cluster
- Machine Learning with TensorFlow
- Genomics with Clara Parabricks on GPUs
- Molecular Dynamics with LAMMPS on GPUs

Course Objectives

The researcher should be able to:

- Investigate container repositories
- Build scientific software containers
- Work with data and HPC Resources

Learning Resources

- HPRC Wiki https://hprc.tamu.edu/wiki/SW:Charliecloud
- HPRC on Youtube <u>https://www.youtube.com/c/TexasAMHPRC</u>
- Charliecloud Manual https://hpc.github.io/charliecloud/
- Docker Manual <u>https://docs.docker.com/</u>
- Other container courses:

NBIS <u>https://nbis-reproducible-research.readthedocs.io/en/latest/singularity/</u> Arizona <u>https://learning.cyverse.org/projects/Container-camp-2020/</u> TACC <u>https://learn.tacc.utexas.edu/mod/page/view.php?id=95</u> Exercises coming up next

Log into FASTER via HPRC Portal

Accessing the HPRC Portal

• HPRC webpage: <u>hprc.tamu.edu</u>, Portal dropdown menu

Accessing FASTER via the HPRC Portal (TAMU)

Log-in using your TAMU NetID credentials.

Central Authentica	ation Service	Activate Your NetID
	LOG IN	
	Current Users NetID or Email Address	
	Password	
	Forgot your password? New Student or Employee? Activate your NetID	

Accessing FASTER via the HPRC Portal (ACCESS)

	Powered By CILogon		
Consent to Attribute Release	× .		
TAMU FASTER ACCESS 000 requests access to the following information. If you do not approve this request, do not proce • Your ClLopon user identifier • Your name • Your user address • Your username and attillation from your identity provider Select an Identity Provider • Remember • Remember • By selecting "Lop On" ye • Select to the grinesy public.	ed.	Login to CILogon ACCESS Username ACCESS Password Don't Remember Login Login	CLOGON facilitates secure access to CyberInfrastructure (CI). M you had an XSEDE account, please enter your XSEDE username and password for ACCESS logil Assister for an ACCESS Account Porgot your password? Need Help?
For questions about this site, please see 5605 or send email to <u>help@citogon.org</u> Know <u>your responsibilities</u> using the Cit.gon Service. See <u>acknowledgemen</u> of support for the site.		Click Here for Assistance	
Select an Identity Provider	Select the Identity Provider appropriate		

Log-in using your ACCESS credentials.

Shell access via the HPRC Portal

Access through (most) web browsers –Top Banner Menu "Clusters" -> "Shell Access"

OnDemand provides an integrated, single access point for all of your HPC resources.

Message of the Day

IMPORTANT POLICY INFORMATION

- Unauthorized use of HPRC resources is prohibited and subject to criminal prosecution.
- Use of HPRC resources in violation of United States export control laws and regulations is prohibited and legal residents.
- Sharing HPRC account and password information is in violation of State Law. Any shared accounts w
- Authorized users must also adhere to ALL policies at: https://hprc.tamu.edu/policies

Training Materials for Charliecloud Tech Lab

• Copy the exercise materials to your scratch directory:

cp -r /scratch/training/charliecloud-techlab \$SCRATCH

• Navigate to the new exercise directory:

cd \$SCRATCH/charliecloud-techlab

Training Materials in FASTER Portal

TAMU HPRC OnDemand (FA	ASTER)	Files -	Jot	os - Clusters	 Interactive A 	pps - 🖻	1	«/» - 😧	- 2	•
	>_0	rpe AH	ome Di cratch/	irectory user/rarensu	New Directory	🔔 Upload	🛓 Download 🛛	Copy/Move	Te De	lete
Home Directory /scratch/user/rarensu	1	/ scrat	ch / us	ser / rarensu / o	charliecloud-techl	ab /	Change directory	[🖞 Сору	path
				🗆 Sho	ow Owner/Mode	□ Show	Dotfiles Filter: Showir	ng 3 rows - 0	rows s	selected
		Туре	•	Name	A.,	Size	Arr Modified	at		A.V.
				lammps	•	121	2/13/2023	2:52:58 PM		
				parabricks	•	12	2/13/2023	2:52:58 PM		
				tensorflow	: •	-	2/13/2023	2:52:27 PM		

Machine Learning with TensorFlow

With exercises

Introduction to TensorFlow

TensorFlow is one of the most popular program frameworks for building machine learning applications.

- Google Brain built **DistBelief** in 2011 for internal usage.
- TensorFlow 1.0.0 was released on Feb 11, 2017
- TensorFlow 2.0 was released in Jan 2018.
- The latest stable version of TensorFlow is 2.10 as of Nov 2022.

Explore tensorflow/tensorflow

TensorFlow in Docker Hub

tensorflow/tensorflow 🕸

By tensorflow • Updated an hour ago

Official Docker images for the machine learning framework TensorFlow (http://www.tensorflow.org)

Image Other

Navigate to the TensorFlow Training Exercises

From the FASTER shell accessed through the HPRC Open OnDemand Portal:

Navigate to the tensorflow exercise directory:

module purge module load charliecloud cd \$SCRATCH/charliecloud-techlab/tensorflow/exercise

Pull a TensorFlow Image

\$ ch-image pull tensorflow/tensorflow:latest
initializing empty build cache
pulling image: tensorflow/tensorflow:latest

\$ ch-image list tensorflow/tensorflow:latest

\$ ch-convert tensorflow/tensorflow:latest tensorflow.sqfs
input: ch-image tensorflow/tensorflow:latest
output: squash tensorflow.sqfs
packing ...

...

...

Verify to be in the Container

\$ ch-run tensorflow.sqfs -- python
Python 3.8.10 (default, Jun 22 2022, 20:18:18)
>>>

>>> import tensorflow as tf

>>> tf

<module 'tensorflow' from '/usr/local/lib/python3.8/dist-packages/tensorflow/__init__.py'>

Press CTRL + D to exit the container

Explore: Does it work outside the container?

\$ python Python 3.9.7 (default, Sep 16 2021, 13:09:58) >>>

Verify to be in the Container

Does it work outside the container? Result:

>>> import tensorflow as tf Traceback (most recent call last): File "<stdin>", line 1, in <module> ModuleNotFoundError: No module named 'tensorflow'

So, we were running TensorFlow in container not on the host!

Try a Simple TensorFlow Program in Charliecloud

\$ ch-run tensorflow.sqfs -- python

Python 3.8.10 (default, Jun 22 2022, 20:18:18)

>>> import tensorflow as tf

>>> a = tf.constant(2)

>>> b = tf.constant(3)

>>> c = a + b

```
>>> print('a + b =', c)
```

a + b = tf.Tensor(5, shape=(), dtype=int32)

2. Build image from a Dockerfile

\$ cd tf-simple/

```
# Use the official TensorFlow image as the base image
FROM tensorflow/tensorflow:latest
 Copy the current directory to the container
#
COPY ./tf-example.py /
 Make that file executable
#
RUN chmod 755 /tf-example.py
```


Build and Convert

\$ ch-image build -t tf-example -f Dockerfile . initializing empty build cache

\$ ch-image list tensorflow/tensorflow:latest tf-example

\$ ch-convert tf-example tf-example.sqfs
input: ch-image tf-example
output: squash tf-example.sqfs
packing ...

Run the script in container

\$ ch-run tf-example.sqfs -- python ./tf-example.py
a + b = tf.Tensor(5, shape=(), dtype=int32)

Charliecloud Pull Batch Example

\$ cd .. \$ sbatch tf-job.slurm

#!/bin/bash

JOB SPECIFICATIONS
#SBATCH --job-name=cc_pull
#SBATCH --time=01:00:00
#SBATCH --ntasks=4
#SBATCH --mem=2560M
#SBATCH --output=cc_pull.%j

```
#Set the job name to "cc_pull"
#Set the wall clock limit to 1hr
#Request 4 task
#Request 2560MB (2.5GB) per node
#Send stdout/err to "cc_pull.[jobID]"
```

cd \$SCRATCH/charliecloud-techlab/tensorflow/exercise

module load charliecloud
module load WebProxy

Pull the TF image
ch-image pull tensorflow/tensorflow:latest

\$ cd tf-nn/
\$ sbatch tf-nn.slurm

Charliecloud CPU Job Batch Example

#!/bin/bash

```
## JOB SPECIFICATIONS
#SBATCH --job-name=cc_cpu_job
#SBATCH --time=01:00:00
#SBATCH --ntasks=4
#SBATCH --mem=2560M
#SBATCH --output=cc_cpu_job.%j
```

#Set the job name to "cc_cpu_job"
#Set the wall clock limit to 1hr
#Request 4 task
#Request 2560MB (2.5GB) per node
#Send stdout/err to "cc_cpu_job.[jobID]

cd \$SCRATCH/charliecloud-techlab/tensorflow/exercise/tf-nn

module load charliecloud
module load WebProxy

Build the image from Dockerfile echo "building the image" ch-image build -t tf-nn -f Dockerfile .

Convert the image to SquashFS format echo "converting the image to SquashFS format" ch-convert tf-nn tf-nn.sqfs

Run the TensorFlow image echo "Running the TensorFlow image" ch-run tf-nn.sqfs -- python ./train.py

A M

GPU Jobs with TensorFlow

An optional activity follows.

I will submit a GPU job and observe that it runs. You will not need to understand how the job works.

In the following section, we will learn how to use containers with GPU.

\$ cd ../tf-gpu/ \$ sbatch tf-gpu.slurm

Charliecloud GPU Job Batch Example

#!/bin/bash

```
## JOB SPECIFICATIONS
#SBATCH --job-name=cc_gpu
#SBATCH --time=01:00:00
#SBATCH --mem=180G
#SBATCH --output=cc_gpu.%j
#SBATCH --gres=gpu:1
#SBATCH --partition=gpu
#SBATCH --cpus-per-task=24
```

#Set the job name to "cc_gpu"
#Set the wall clock limit to 1hr
#Request 180GB per node
#Send stdout/err to "cc_gpu.[jobID]"

cd \$SCRATCH/charliecloud-techlab/tensorflow/exercise/tf-gpu

```
module load charliecloud
module load nvidia-container-cli/1.11.0-hprc
module load WebProxy
```

Charliecloud GPU Job Batch Example

echo "building the image"
ch-image build -t tf-gpu -f Dockerfile.

echo "converting the image to a directory"
ch-convert tf-gpu \$TMPDIR/tf-gpu-dir

echo "Injecting the necessary NVIDIA libraries" ch-fromhost --nvidia \$TMPDIR/tf-gpu-dir

echo "converting the image to SquashFS format"
ch-convert \$TMPDIR/tf-gpu-dir tf-gpu.sqfs

echo "Running the TensorFlow image"
ch-run tf-gpu.sqfs -- python /app/train-gpu.py

Monitor GPU Usage

Every 1.0s: squ	ueue –u happ	idence1				logi	n1: Sa	at Feb 1	1 08:48:2	6 2023	
JOBID N/ TIME TI	ame Ime_left	USER START_TIME	REASON	PARTITION	NODELI	ST	NODI	ES CPUS	STATE		
120734 co 1:25 58	c_gpu 8:35	happidence: 2023-02-11T08:47:0	1 None	gpu	fc172		1	24	RUNNING		
					Every 1.	0s: nv 11 08:	idia-sm 50:26 2	i 023			
					+	-SMI 5	25.85.1	2 Drive	r Version: 52	5.85.12	CUDA \
\$ ssh <	comp	oute-noc	de>	_	GPU Ni Fan Ti	ame emp P	Pe erf Pw	rsistence⊣ r:Usage/Cap	1 Bus-Id Me	Disp.A mory-Usage	Vola GPU-
\$ watc	<u>:h -n 1</u>	nvidia-s	mi		======= 0 T(N/A :	esla T 29C	4 P0	0n 46W / 70W	-+ 00000000:1 15651MiB 	D:00.0 Off / 16384MiB	=+====
				_	1 To N/A	esla T 21C	4 P8	0n 9W / 70W	00000000:1 2MiB	E:00.0 Off / 16384MiB	

ersion: 12.0 tile Uncorr. ECC Jtil Compute M. MTG M 0ff Default 53° N/A 0ff Default N/A 2 Tesla T4 0n 00000000:1F:00.0 Off 21C P8 11W / 70W Default N/A 2MiB / 16384MiB 0% N/A 3 Tesla T4 0n 00000000:20:00.0 Off N/A 21C P8 9W / 70W 2MiB / 16384MiB Default 0% N/A Processes: GI CI GPU PID Type Process name GPU Memory ID ID Usage 0 N/A N/A 771345 C python 15646MiB

Genomics with Clara Parabricks on GPUs

Clara Parabricks

- GPU-accelerated version of common bioinformatics pipeline
- Works with both RNA-seq and WGS data
- NVIDIA provides images that containers easily integrate with Charliecloud
- Today's exercise will focus on completing the first portion of the pipeline

NVIDIA Product Sheet:

https://resources.nvidia.com/en-us-genomics-ug-ep/healthcare-genomics-?lx=M-s96l&ncid=em-nurt-521116&mkt_tok=MTU2LU9GTi03NDIAAAGG5gOCuzMHKWvhCg5ODJ9NTi9KCxm57Lxjd5DcahRJvhUUc-g_vTLDcNVB3HBmOyWbGWigpg4yq1h3SK9QNOLnbLU6cm8VhMCHmup4BGcunnUvwRCy#cid=ix09_em-nurt_en-us

Clara Parabricks

• Massive speed-up versus CPU-only pipelines

Data was generated using publicly available data (https://precision.fda.gov/challenges/truth) for NA12878, deprecating the data to 30X coverage. For the 22-minute runtime, DGX A100 with 320G memory was used. The native GATK4.1 numbers were generated using 32 vCPU (3.1 GHz Intel Xeon* Platinum 8175M) using 320Gb RAM.

NVIDIA Product Sheet:

https://resources.nvidia.com/en-us-genomics-ug-ep/healthcare-genomics-?lx=M-s96l&ncid=em-nurt-521116&mkt_tok=MTU2LU9GTi03NDIAAAGG5gOCuzMHKWvhCg5ODJ9NTi9KCxm57Lxjd5DcahRJvhUUc-g_yTLDcNVB3HBmOyWbGWigpg4yq1h3SK9QNOLnbLU6cm8VhMCHmup4BGcunnUvwRCy#cid=ix09_em-nurt_en-us

GPUs with Charliecloud

<u>https://hpc.github.io/charliecloud/install.html#running-containers</u> <u>https://hpc.github.io/charliecloud/ch-fromhost.html#examples</u> Says "to inject nVidia GPU libraries":

- nvidia-container-cli ≥ 1.0.0
- nvidia libraries & executables present
- Use ch-fromhost --nvidia <image in directory format>

On FASTER cluster:

- nvidia-container-cli is provided as a module.
- Compute nodes with GPUs have matching libraries present.

- Containers need to be created on a node with GPUs
- Request an interactive session on a compute node equipped with a GPU:

```
srun --mem=128G --time=01:00:00 --gres=gpu:1 \
    --partition=gpu --reservation=training \
    --cpus-per-task=24 --pty bash -i
```

cd \$SCRATCH/charliecloud-techlab/parabricks

• Load the required modules:

```
# Load the module for Charliecloud
module load charliecloud/0.31
```

```
# Load the module we'll need for the NVIDIA libraries
module load nvidia-container-cli/1.11.0-hprc
```

Load a module to allow for internet access
module load WebProxy

• Grab the image from NVIDIA using Charliecloud:

ch-image pull nvcr.io/nvidia/clara/clara-parabricks:4.0.1-1 parabricks-4.0.1-1

← → C	🔿 🛔 https://catalog.n	gc. nvidia.com /orgs/nvidia/teams/clara/containers/clara-parabricks/tags	
🕀 Systems High Perf	🐺 RT at a glance 🛛 TAMU HPRC OnDe	🕀 HPRC Portal 🕀 HPRC Wiki 🕀 Galaxy HPRC CPT 🕀 Galaxy HPRC Maro 🍸 Training Schedule S 🛒 Home - Access 🎇 TACC	User Portal 🛛 🚿
🧆 NVIDIA.	NGC CATALOG		Welcome Guest $ arsia $
Catalog > Conta	ners > Nvidia Clara Parabricks lara Parabricks		Copy Image Path 🗸
		Overview Tags Layers Security Scanning Related Collections Search tags	×
Descriptio		4.0.1-1 12/15/2022 845 PM 1.72 GB 1 Architecture	~
Nvidia Cl compute cations a marily su DNA, RN,	ara Parabricks is an accelerated framework that supports appli- cross the genomics industry, pri- oporting analytical workflows for , and somatic mutation detec-	4.0.0-1 09/08/2022 7.40 PM 2.02 GB 1 Architecture	~
Publisher NVIDIA	vauvna.	3.8.0-1 07/07/2022 6 01 PM 1.75 GB 1 Architecture	~
4.0.1-1		3.7.1-1.ampere	

• Check for the image that we just pulled:

```
ch-image list
```

• Convert the image to a directory stored on \$TMPDIR:

ch-convert parabricks-4.0.1-1 \$TMPDIR/parabricks4

 Inject the necessary NVIDIA libraries (to be able to run on the GPUs):

ch-fromhost --nvidia \$TMPDIR/parabricks4

• Convert the container to a SquashFS file

ch-convert \$TMPDIR/parabricks4 parabricks4.sqfs

• We're now ready to run Parabricks!

```
ch-run -b "$PWD:/mnt/1" -c "mnt/1" parabricks4.sqfs pbrun \
    fq2bam -- --ref Homo_sapiens_assembly38.fasta \
    --in-fq sample_1.fastq.gz sample_2.fastq.gz \
    --out-bam test.bam
```

Molecular Dynamics with LAMMPS on GPUs

Container Concepts You Need To Know

Some containers set Environment variables at build time.

- In a Dockerfile, use the ENV statement to create variables.
- Using ch-run, add the --set-env flag to load those variables.

Some containers set Environment variables at runtime. This is called a **runscript**.

- Other Container frameworks use Dockerfile ENTRYPOINT statements to define this script.
- In a Charliecloud Dockerfile, copy the runscript into the container as a regular file instead (Dockerfile COPY).
- Using ch-run, execute the runscript from the command line.

LAMMPS is a classical molecular dynamics code with a focus on materials modeling. It's an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator.

https://www.lammps.org/ has a cool animated logo.

NVIDIA provides GPU-ready container images for lammps. <u>https://catalog.ngc.nvidia.com/orgs/hpc/containers/lammps</u>

Inspect Container Images at Home

Following along live? Do not attempt this.

Docker method:

docker pull nvcr.io/hpc/lammps:29Sep2021up2
docker inspect nvcr.io/hpc/lammps:29Sep2021up2

Podman method:

podman pull docker://nvcr.io/hpc/lammps:29Sep2021up2
podman inspect nvcr.io/hpc/lammps:29Sep2021up2

Find the Entrypoint and Env variables under "Config".

```
[rarensu@ye-olde-dell ~]$ podman inspect nvcr.io/hpc/lammps:29Sep2021up2
       "Config": {
            "Env": [
                 "PATH=/usr/local/openmpi/bin:/usr/local/ucx/bin:/usr/local/nvidia/bin:/usr/local/cuc
                 "CPATH=/usr/local/knem/include:/usr/local/gdrcopy/include:",
                 "LIBRARY PATH=/usr/local/gdrcopy/lib:",
                 "LD LIBRARY PATH=/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/local/fftw/lib:",
                 "NVIDIA DRIVER CAPABILITIES=compute,utility",
                 "NVIDIA REQUIRE CUDA=cuda>=11.6 brand=tesla,driver>=460,driver<461 brand=tesla,drive
                 "NVIDIA VISIBLE DEVICES=all",
                 "OMPI ALLOW RUN AS ROOT=1",
                 "OMPI ALLOW RUN AS ROOT CONFIRM=1",
                 "OMPI MCA rmaps base oversubscribe=1",
                 "UCX MEMTYPE CACHE=n"
            ],
            "Entrypoint": [
                 "/usr/bin/nventry",
                 "--build base dir=/usr/local/lammps",
                 "--build default=gpu native"
            ],
            "WorkingDir": "/host pwd"
       }.
```

Navigate to the LAMMPS Training Exercises

From the FASTER shell accessed through the HPRC Open OnDemand Portal:

Navigate to the lammps exercise directory:

cd \$SCRATCH/charliecloud-techlab/lammps/

Warning: it contains the solutions to the exercises.

Alternatively, make your own empty directory and work there:

mkdir \$SCRATCH/charliecloud-techlab/my-lammps

Inspect Container Images using Singularity

Following along live? This is optional.

On a compute node:

srun --mem=4000m --time=01:00:00 --pty bash -i

Option A (not recommended) download your own image:

export SINGULARITY_CACHEDIR=\$TMPDIR/.singularity
module load WebProxy
singularity pull lammps-29Sep2021up2.sif docker://nvcr.io/hpc/lammps:29Sep2021up2
SIF=lammps-29Sep2021up2.sif

Option B (recommended) use the pre-downloaded image: SIF=/scratch/data/Singularity/images/lammps-29Sep2021up2.sif

Copy the Runscript and Environment:

singularity exec \$SIF cp /.singularity.d/runscript .
singularity exec \$SIF cp /.singularity.d/env/10-docker2singularity.sh .
exit

Inspect the Runscript

Inspect the runscript we borrowed from Singularity. It corresponds to the Entrypoint reported by Docker/Podman.

#!/bin/sh
OCI_ENTRYPOINT='"/usr/bin/nventry" "--build_base_dir=/usr/local/lammps"
"--build_default=gpu_native"'

... # lots of boilerplate code

exec "\$@"

Optional: also inspect the Environment script.

Dockerfile

Create a regular file named Dockerfile and add the following text.

FROM nvcr.io/hpc/lammps:29Sep2021up2

COPY ./runscript /

RUN chmod 755 /runscript

Getting on a GPU node

srun --ntasks=16 --mem=4000m --time=01:00:00 --gres=gpu:1 --partition=gpu --pty bash -i

Following along live? add --reservation=training

module load charliecloud
module load WebProxy

cd \$SCRATCH/charliecloud-techlab/lammps (or your workdir)

Getting a GPU, Alternative

also need to
module load charliecloud
module load WebProxy

Home / My Interactive Sessions / VNC

Interactive Apps	VNC
BIO	This app will launch a VNC job on FASTER for remote
Beauti	visualization.
F IGV	Number of hours (max 168)
Mauve	Number of cores (max 64)
Structure	16
Desktops	Total GB Memory (max 240)
Desktop	40
GUI	40
ANSYS Workbench	Node type
MATLAB	T4select a GPU node only if your software supports GPU
VNC	Number of GPUs
maging	1
🖇 ChimeraX	Font size

Building on a GPU node *Challenge*: can you recall the steps?

Fetch image from Repository.

ch-image pull nvcr.io/hpc/lammps:29Sep2021up2

Build the Dockerfile that adds our runscript to the image.

ch-image build -t lammps:29Sep2021up2 .

Convert image to Directory format.

ch-convert lammps:29Sep2021up2 \$TMPDIR/lammps-29Sep2021up2

Insert the local NVIDIA libraries.

```
module load nvidia-container-cli
```

ch-fromhost --nvidia \$TMPDIR/lammps-29Sep2021up2

Convert image to SquashFS format.

ch-convert \$TMPDIR/lammps-29Sep2021up2 lammps-29Sep2021up2.sqfs

Testing if LAMMPS is installed

(still on the GPU node, of course)

ch-run --set-env lammps-29Sep2021up2.sqfs -- /runscript mpirun lmp -h

mpirun is used to execute LAMMPS to work around a problem with srun. 1mp is the LAMMPS executable.

Quiz: What does /runscript do?

LAMMPS Benchmark

These files are also found in the Training Materials you copied.

NVIDIA provides a benchmarking script for their container. On the same page, find: "An example Slrum [sic] batch script that may be modified for your specific cluster setup may be viewed <u>here</u>."

Copy the last line in a file named **benchmark.sh** and edit slightly mpirun lmp -k on g 1 -sf kk -pk kokkos cuda/aware on neigh full comm device \
 binsize 2.8 -var x 4 -var y 4 -var z 4 -in /host pwd/in.lj.txt

Recommended: set \${gpus_per_node} to 1 or replace it. Recommended: change -var xyz 8 to -var xyz 4 to prevent out-of-memory error. Recommended: insert mpirum to workaround a problem with srun.

Download in.lj.txt

wget https://lammps.sandia.gov/inputs/in.lj.txt

LAMMPS GPU benchmark

(still on gpu node, of course)

Test if /host_pwd exists in container. (Needed for the benchmark.sh to work correctly.)

ch-run lammps-29Sep2021up2.sqfs -- ls /host_pwd

(it exists, and it's empty)

Apply the environment variables.

Bind mount host_pwd so we can use our local files.

Execute our benchmark script.

ch-run <mark>--set-env</mark> -b "\$PWD:/host_pwd" -c /host_pwd lammps-29Sep2021up2.sqfs -- /runscript <mark>bash</mark> benchmark.sh

Tech Lab Complete

Conclusion

- Run Containers on clusters! Take control of your software.
- HPRC supports Charliecloud.
- Convert Docker to Charliecloud!
- Ask for help!

Questions

?

Learning Resources

- HPRC Wiki https://hprc.tamu.edu/wiki/SW:Charliecloud
- HPRC on Youtube <u>https://www.youtube.com/c/TexasAMHPRC</u>
- Charliecloud Manual https://hpc.github.io/charliecloud/
- Docker Manual <u>https://docs.docker.com/</u>
- Other container courses:

NBIS <u>https://nbis-reproducible-research.readthedocs.io/en/latest/singularity/</u> Arizona <u>https://learning.cyverse.org/projects/Container-camp-2020/</u> TACC <u>https://learn.tacc.utexas.edu/mod/page/view.php?id=95</u>

Thank you

Contact: help@hprc.tamu.edu

