Introduction to Julia
Programming Language

Jian Tao
jtao@tamu.edu
Spring 2023 HPRC Short Course

03/21/2023
TEXAS A&M UNIVERSITY H|gh Perfo rmance TEXAS A&M
Al?d School of Performance, AFVI Research Computing AFVI Institute of

Visualization & Fine Arts DIVISION OF RESEARCH Data Science

Introduction to Julia

Part V. Plotting with Julia

Part |. Getti ith
art |. Getting Started wit (~10 mins)

FASTER (~20 mins)

Q&A and Break
(10 mins) Part IV. Basics of Julia
(~60 mins)

Part Il. Julia - What and

Why? (~20 mins)

Part lll. Julia as an
Advanced Calculator
(~30 mins)

Part I. Getting Started with FASTER

TAMU HPRC Short Course: Getting Started with FASTER and ACES

https://hprc.tamu.edu/files/training/2023/Spring/IntroToComposable_2023_spring.pdf

FASTER Cluster

[hprc.tamu.edu/wiki/FASTER:Intro]

Resources Quantity
64-core login nodes 4 (3 for TAMU, 1 for ACCESS)
64-core compute nodes 180 (11,520 cores)
(256GB RAM each)
Composable GPUs 200 T4 16GB
40 A100 40GB
10 A10 24GB
4 A30 24GB
8 A40 48GB
Interconnect Mellanox HDR100 InfiniBand

(MPI1 and storage)
Ligid PCle Gen4 (GPU composability)

Global Disk 5PB DDN Lustre appliances

FASTER (Fostering Accelerated
Sciences Transformation Education
and Research) is a 180-node Intel
cluster from Dell featuring the Intel Ice
Lake processor.

https://hprc.tamu.edu/wiki/FASTER:Intro

Composability at Hardware Level

Server pool

Accelerator

Ligid
pool (GPUs, - . .)
FPGA, etc.) Felairie

Storage
pool (SSDs)

FIF

Traditional Server ’ Composable Resources Composable Server Configuration
Configuration

[hprc.tamu.edu/wiki/FASTER:Intro]

https://hprc.tamu.edu/wiki/FASTER:Intro

ACES - Accelerating Computing for Emerging Sciences (Phase 1)

Graohcore IPU 16 16 Colossus GC200 IPUs and dual AMD Rome
- CPU server on a 100 GbE RoCE fabric

5 FPCA SOC with Intel Stratix 10 SX FPGAs, 64 bit
Intel FPCGA PAC D5005 qguad-core Arm Cortex-A53 processors, and 32GB
DDR4
TB of Intel D I
Intel Obtane SSDs 5 3 of Intel Optane SSDs addressable as

memory using MemVerge Memory Machine.

ACES Phase | components are available through FASTER

https://www.graphcore.ai/products/ipu
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html
https://www.liqid.com/products/liqid-elements/storage-class-memory/element-lqd4900
https://hprc.tamu.edu/resources/

Accessing the HPRC Portal

e HPRC webpage: hprc.tamu.edu, Portal dropdown menu

Home User Services Resources Research Policies Events About
g v » T . w1 L Ry —
< . " 3 - ;
¥ P o ® ' ¢ TerraPortal "P‘ o 1;7
/l‘ T I
e <« - | ; ™ Grace Portal W ey s
T

H |
o

FASTER Portal

Quick Links
New User Information
Accounts

Apply for Accounts
Manage Accounts

User Consulting
Training

FASTER Portal (ACCESS)

TEXAS A&M UNIVERSITY TO ACQUIRE A

https://hprc.tamu.edu/

Accessing FASTER via the HPRC Portal (TAMU)

Log-in using your TAMU NetID credentials.

Forgot your password?

New Student or Employee? Activate your NetID

Accessing FASTER via the HPRC Portal (ACCESS)

Log-in using your ACCESS credentials.

ZACCESS CiLogon
CiLogon #ACCESS
Consent to Attribute Release v
Login to CILogon
TAMU FASTER ACCESS OOD requests access to the following information. If you do not approve this request, do not proceed ogo n
ACCESS Username
+ Your ClLogon user identifier

« Your name

« Your email address ClLogon facilitates secure access to CyberInfrastructure (CI).
+ Your username and affiiation from your identity provider ACCESS Password

4 1f you had an XSEDE account, please enter your XSEDE username and password for ACCESS login
> Register for an ACCESS Account

- o Don't Re ber Logil
- Select an Identity Provider - e e » Forgot your password?
o

ACCESS Cl (XSEDE) ~

Remember nis selection @

EE

By selecting "Log On", yo _agree to the privacy policy.

Click Here for Assistance

Select an Identity Provider Select the Id entity
Provider appropriate
for your account.

ACCESS CI (XSEDE)~ ©

Login HPRC Portal - FASTER/FASTER(ACCESS)

[] ® @ High Performance Research C- X +

&« C @& hprc.tamu.edu a M % © 8 @@ «© & 0O e H

TEXAS A&M HIGH PERFORMANCE RESEARCH COMPUTING

Home User Services Resources Research Policies Events About
- 4 e
o R 2T o » . ~ UL
s o WVAVAY '!g) _— y Terra Portal

t). ‘

Quick Links

New User Information
Accounts
Apply for Accounts
Manage Accounts
User Consulting

Training n
Knowledge Base

Software
FAQ

FASTER Portal (ACCESS)

llear Puidae

FASTER Shell Access - Portal

® @ @ High Performance Research C: X 4 Dashboard - TAMU HPRC OnlC X -+ v
C @& portal-faster.hprc.tamu.edu/pun/sys/dashboard h ¥ @ 8 ©@ © » 0O e :

TAMU HPRC OnDemand (FASTER) Files~ Jobs~ Clusters~ Interactive Apps ¥

>_faster Shell Access

1
OnDemand provides an integrated, single access point for all of your HPC resources.

Message of the Day

IMPORTANT POLICY INFORMATION

« Unauthorized use of HPRC resources is prohibited and subject to criminal prosecution.
» Use of HPRC resources in violation of United States export control laws and regulations is prohibited. Current
HPRC staff members are US citizens and legal residents.

« Sharing HPRC account and password information is in violation of State Law. Any shared accounts will be
DISABLED.

« Authorized users must also adhere to ALL policies at: https://hprc.tamu.edu/policies

! WARNING: THERE ARE ONLY NIGHTLY BACKUPS OF USER HOME DIRECTORIES. !!

FASTER Shell Access - Shell

o @ Shell - Open OnDemand X +
Cc @ portal-faster.hprc.tamu.edu/pun/sys/shell/ssh/fas... h % @& @ *» 0O 9

Host: faster.hprc.tamu.edu Themes:

blolokolokokokskokkkekkekRsolksolkilorkkkokokokskokkekkkkeeekoksksokokokoRkkokoRokkokokokokokokokek koo oRok

This computer system and the data herein are available only for authorized

purposes by authorized users. Use for any other purpose is prohibited and may

result in disciplinary actions or criminal prosecution against the user. Usage

may be subject to security testing and monitoring. There is no expectation of

privacy on this system except as otherwise provided by applicable privacy laws.

Refer to University SAP 29.01.03.M0.02 Acceptable Use for more information.
bololoiolkokskkkkkkklksolloliololikioiikokskkkekkkkkkolokolorkioroforokokskskokskokkkokko Rk

Password:

® @ jtao@login2:~ b3 + v
C' @ portal-faster.hprc.tamu.edu/pun/sys/shell/sshffas.. h ¥ @& D » 0O 9 H
Host: faster.hprc.tamu.edu Themes:

UPDATE (12:11a 02/20/2023): There was another storage incident between
11:10-11:50p. We are still investigating this new incident since the
indicators observed so far were not related to the previous user's jobs.

UPDATE (10:16p ©2/19/2023): We may have isolated and removed the
batch jobs that were impacting the Grace and FASTER shared storage.
We are continuing to monitor the storage for any further issues.

Original announcement (7:13p ©2/19/2023): Both the FASTER and Grace
clusters are currently having issues with their shared storage since
about 5:15p February 19th. The root cause and recovery options are
under investigation.

[02feb2023] FASTER hardware update: D5005 FPGAs are currently unavailable.

To see these messages again, run the motd command.

Your current disk quotas are:
Disk Disk Usage Limit File Usage Limit
/home/jtao 4K 10.0G 5! 10000
/scratch/user/jtao 21.5G 1.07 156632 250000
/scratch/group/hprc 4.07 10.0T 620476 1000000

* Quota increase for /scratch/group/hprc will expire on Dec 31, 2026
Type 'showquota' to view these quotas again.
[jtao@faster2 ~]$

Using Pre-installed Julia Module

Step 1. Find the module to be loaded

$ module spider julia

Description:

Julia is a high-level, high-performance
dynamic programming language for numerical
computing

Versions:
Julia/1.6.5-linux-x86_64
Julia/1.7.0-linux-x86_64
Julia/1.7.1-linux-x86_64
Julia/1.7.2-linux-x86_64
Julia/1.8.0-linux-x86_64

You can also use the web-based interface to find software
modules available on HPRC systems.
SW:Julia - TAMU HPRC

Step 2. Load the module

$ module load Julia/1.8.0-linux-x86_64

l

Step 3. Start Julia REPL

$ julia

[jtao@faster2 ~]$ julia

(
I
I
/

)
il
]
]

/

\

Documentation: https://docs.julialang.org
Type "?" for help, "]?" for Pkg help.

Version 1.8.0 (2022-08-17)
Official https://julialang.org/ release

l
|
| |
l
|

https://hprc.tamu.edu/software/faster/
https://hprc.tamu.edu/wiki/SW:Julia

Using Your Own Julia Installation

Step 1. Find the version to be installed Step 2. Download & Unzip

Current stable release: v1.8.5 (January 8, 2023) — | $ cd $SCRATCH
Checksums for this release are available in both MD5 and SHA256 formats. $ Wget httpS/IIjulla-1 .8.5-|inux-X86_64.taI’.gZ
$ tar -zxvf julia-1.8.5-linux-x86_64.tar.gz
Windows [help] 64-bit (installer), 64-bit (portable) 32-bit (
macOS x86 (Intel or Rosetta) [help] 64-bit (.dmg), 64-bit (.tar.gz) *
macOS ARM (M-series Processor) [help] 64-bit (.dmg), 64-bit (.tar.gz) Ste p 3 Start J u I ia RE P L
Generic Linux on x86 [help] 64-bit (glibc) (GPG)| 64-bit (musl)[(GPG) 32-bit (
Generic Linux on ARM [help] 64-bit (AArch64) (GPG) $ module purge
$ cd $SCRATCHY/julia-1.8.5/bin; ./julia
Generic Linux on PowerPC [help] 64-bit (little endian) (GPG)
Generic FreeBSD on x86 [help| 64-bit (GPG)
[jtao@faster2 bin]$./julia
Source Tarball (GPG) Tarball

Documentation: https://docs.julialang.org

Type "?" for help, "]?" for Pkg help.

Version 1.8.5 (2023-01-08)
Official https://julialang.org/ release

SW:Julia - TAMU HPRC

https://hprc.tamu.edu/wiki/SW:Julia

Install Julia Packages

export Julia Depot path (default to ~/.julia)
$export JULIA DEPOT PATH=$SCRATCH/.julia

start Julia
$julia

julia>]
(@v1.8) pkg> add Plots UnicodePlots Plotly

Commands to Copy Examples

e Navigate to your personal scratch directory
$ cd $SCRATCH
e Files for this course are located at
/scratch/training/julia examples.tgz
Make a copy in your personal scratch directory
$ cp /scratch/training/julia examples.tgz $SCRATCH/
e Extract the files
$ tar -zxvf julia examples.tgz
e Enter this directory (your local copy)
$cd julia examples

$ julia helloworld.jl

16

Load Julia Module, Compile, and Run

@ jtao@login2:/scratch/use. x = + 85— 48]

C & portal-faster.hprc.tamu.edu/pun/s

Host: faster.hprc.tamu.edu

[jtao@faster2 julia examples]$ ml Julia
[jtao@faster2 julia examples]$ julia --version
julia version 1.8.0

[jtao@faster2 julia examples]$ julia helloworld.jl
hello world!

[jtao@faster2 julia examples]$ julia

Documentation: https://docs.julialang.org
Type "?" for help, "]?" for Pkg help.

|
|
|
| Version 1.8.0 (2022-08-17)
| Official https://julialang.org/ release
|
versioninfo()

Julia Version 1.8.0
Commit 5544a0fab76 (2022-08-17 13:38 UTC)
Platform Info:

0S: Linux (x86 64-linux-gnu)

CPU: 13.0.1 (ORCJIT, icelake-server)

Threads: 1 on 64 virtual cores
Environment:

LD LIBRARY PATH = /sw/eb/sw/Julia/1.8.0-1inux-x86 64/1ib

JULIA DEPOT PATH = /scratch/user/jtao/.julia

Julia - Quickstart

The julia program starts the interactive REPL. You will be immediately
switched to the shell mode if you type a semicolon. A question mark
will switch you to the help mode. The key can help with
autocompletion.

julia> versioninfo ()
julia> VERSION

Special symbols can be typed with the escape symbol and , but
they might not show properly on the web-based terminal.

julia> \sqrt
julia> for i1 € 1:10 println(i) end

Julia REPL Keybindings

Keybinding Descrition
rd Exit (when buffer is empty)
Ac Interrupt or cancel
A Clear console screen

Return/Enter,]

New line, executing if it is complete

?0r; Enter help or shell mode (when at start of a line)
AR, AS Incremental history search

] Enter Pkg REPL

Backspace or "c Quit Pkg REPL

O
Part Il. O Q0
Julia - What and u Ia
Why?

O
julia
Julia is a high-level general-purpose dynamic programming language primarily
designed for high-performance numerical analysis and computational science.

= Born in MIT's Computer Science and Artificial Intelligence Lab in 2009
Combined the best features of Ruby, MatLab, C, Python, R, and others

First release in 2012
Latest stable release v1.8.5 as of Mar 14, 2023

https://julialang.org/

customized for "greedy, unreasonable, demanding programmers".

Julia Computing established in 2015 to provide commercial support.

https://julialang.org/
https://juliacomputing.com/

10

10

10

10

«
o
[J&)

® @00 0
o)
edel00®
o0do0
[N
[1]

JavaScript Matlab Mathematica Python

benchmark

@ iteration_pi_sum

@ matrix_multiply

® matrix_statistics

® parse_integers

® print_to_file

® recursion_fibonacci
recursion_quicksort

® userfunc_mandelbrot

Image Credit: Julia Micro-Benchmarks

https://julialang.org/benchmarks/

RedMonk Q322 Programming Language Rankings

100 -

R
— .
ObjectiAit Ruby
T TypeScript
sual Basic .NET Visual Basic .
Matlab
Shell
Kotli?
75+ .
GCC Machine Description Assembly o
B Sass Groal\z‘i
Pt . Arduino A
: eﬁl& el ASP
—
) amL _
3 Eriang COffeeScriptma,
E ActionScript ng o
b GLSL Scheme
o o ocam
ok Processing -
] iy Verilog
1z Racket Solidity
5 Mathematica . Smarty
€ UPREhacs Lisp
& FreeMarker coq SystemVerilog
'E Pascal Apg(
_§ StandéfRAfsembly Foaki
e Haygmalitalk Elm
tack o e
25- ObjectiypsGa BitBake
a5 lbs Gherkin
PostScript e Vala
Crystal Nix
PureScript L GDScript
Loel Reasongajerina
% Hack HCL
Lean
Jsonnet ShaderLab
SaF Starlark Vim script
H Rich Text Format Roff
’ - 50 7s 100

Popularity Rank on GitHub (by # of Projects)

Image Credit: RedMonk (The RedMonk Programming Language Rankings: June 2022 — tecosystems)

https://redmonk.com/sogrady/2022/10/20/language-rankings-6-22/

julia

Major features of Julia:

Fast: designed for high performance,

General: supporting different programming patterns,
Dynamic: dynamically-typed with good support for interactive
use,

Technical: efficient numerical computing with a math-friendly
syntax,

Optionally typed: a rich language of descriptive data types,
Composable: Julia’s packages naturally work well together.

Mostly importantly, for many of us, Julia seems to be the language
of choice for Scientific Machine Learning.

"Julia is as programmable
as Python while it is as fast
as Fortran for number
crunching. It is like Python
on steroids."

--an anonymous Julia user
on the first impression of
Julia.

Juno IDE

e Juno is an Integrated
Development
Environment (IDE) for

the Julia language.
Juno is built on Atom,
a text editor provided
by Github.

Image Credit: Juno (http://junclab.org/)

http://junolab.org/

Jupyter Notebook

= Jupyter weicometoP

File Edt View nsert Cel

B + xaB + 3 »1

= Jupyter

Welcome to the
This Notebook Server wa

WARNING

Don't rely on this sefy

Your server is hosted that

Run some Python (

To run the code below:

1. Click on the cell to s¢
2. Press SHIFT+ENTER

A full tutorial for using the

In [J: tmatplotlib inline

import pandas as pd
import numpy as np
import matplotlib

— Jupyter Lorenz Differential Equations e

Fle Edit View Inset Cell Kemel Help

B+ x @B 4% > B C Coe 4 Cell Toolbar: ' None

Exploring the Lorenz System

In this Notebook we explore the Lorenz system of differential equations:

i=0(y-x)
y=px-y-x
Z=~fr+xy

This is one of the classic systems in non-linear differential equations. It exhibits a range of

A

Python3 O

complex behaviors as the parameters (0, f, p) are varied, including what are known as chaotic

solutions. The system was originally as a simplified

atmospheric convection in 1963,

In (7]: interact(Lorenz, N=fixed(10), angle=(0.,360.),
o=(0.0,50.0),B=(0.,5), p=(0.0,50.0))

angle 308.2
max_time |12

o 10

B 26

P 28

Image Credit: Jupyter (http://jupyter.org/)

http://jupyter.org/

[jtao@faster2 ~]$ julia

Documentation: https://docs.julialang.org

° - : Type "?" for help, "]?" for Pkg help.
j u I Ia R E P L A Version 1.8.0 (2022-08-17)

Official https://julialang.org/ release

e Julia comes with a full-featured interactive command-line
REPL (read-eval-print loop) built into the Julia executable.

e |n addition to allowing quick and easy evaluation of Julia
statements, it has a searchable history, tab-completion,
many helpful keybindings, and dedicated help and shell
modes.

Part lll.

Julia as an Advanced
Calculator

{

o 3 A\ X o o 5
e R R:AR
bR N G R G H C R ¢ ERS

D, B

0
@»E

an i
<
o

T
>

i

aeeaen
«7« @08
SR> N

@oo0

H
§

=

<

UHEUERBBY &

o/ (1] Ll

1P Toxas hermanns

B

ey . 3
6! 2 &1 - Y & = > h
o ' - : L] p -
2 - " M » > B

)

"

Image Credit: http://www.ti.com/

http://www.ti.com/

+

O .~ N\ ¥ 1

>

Arithmetic Operators

Addition (also unary plus)
Subtraction (also unary minus)
multiplication

division

inverse division

mod

to the power of

More about Arithmetic Operators

1. The order of operations follows the math rules.

. The updating version of the operators is formed by placing a

=" immediately after the operator. For instance, x+=3 is
equivalent to x=x+3.

. Unicode could be defined as operator.

. A "dot" operation is automatically defined to perform the
operation element-by-element on arrays in every binary
operation.

. Numeric Literal Coefficients: Julia allows variables to be
Immediately preceded by a numeric literal, implying
multiplication.

Arithmetic Expressions

Some examples:

julia> 10/5%*2

julia> 5*273+4\2

julia> -274

julia> 871/3

julia> pi¥e

julia> x=1; x+=3.1

julia> x=[1,2]; x = x.”*(-2)

Relational Operators

== True, if it is equal
I=,# True, if not equal to
< less than
> greater than

< less than or equal to
>=,2 greater than or equal to

* try #(4,5), what does this mean? How about !=(4,5)

Boolean and Bitwise Operators

& Logical and

| Logical or
Not

, Xor() Exclusive OR
Bitwise OR
Negate
Bitwise And

>> Right shift

<< Left shift

R 2 — K o= — 0

NaN and Inf

NaN is a not-a-number value of type Float64.
Inf is positive infinity of type Float64.
-Inf is negative infinity of type Float64.

e Infis equal to itself and greater than
everything else except NaN.

e -Infis equal to itself and less then
everything else except NaN.

e NaN is not equal to, not less than, and

not greater than anything, including itself.

julia>
julia>
true
julia>
false
julia>
false
julia>
true
julia>
false

NaN == NaN #false

NaN != NaN

NaN < NaN

NaN > NaN

isequal(NaN, NaN)

isnan(1/0)

Variables

The basic types of Julia include float, int, char, string, and bool. A global
variable can not be deleted, but its content could be cleared with the
keyword nothing. Unicode can be used as variable names!

julia> b = true; typeof(b)
julia> varinfo()

julia> x = "Hi"; x > "He"
julia> y = 10

julia> z = complex(1l, y)
julia> println(b, x, y, z)
julia> b = nothing; show(b)
julia> &=2; i=1

Naming Rules for Variables

Variable names must begin with a letter or underscore
julia> 4c = 12

Names can include any combinations of letters, numbers,
underscores, and exclamation symbol. Some unicode characters
could be used as well

julia> ¢ 4 = 12; & = 2
Maximum length for a variable name is not limited

Julia is case sensitive. The variable name A is different than the
variable name a.

Displaying Variables

We can display a variable (i.e., show its value) by simply typing
the name of the variable at the command prompt (leaving off the
semicolon).

We can also use print or println (print plus a new line) to
display variables.

julia> print("The value of x is:"); print(x)
julia> println("The value of x is:"); print(x)

Exercise

Create two variables:a = 4 and b = 17.2
Now use Julia to perform the following set of calculations:

(b+5.4)/3 b2-4b+5a
a>b && a>1.0 al=b

Basic Syntax for Statements (l)

1. Comments start with "#'

2. Compound expressions with begin blocks and (;) chains

julia> z = begin
1
2

y

X < X
+ 1

end
julia> z = (x =1; y = 2; X +VY)

Basic Syntax for Statements (ll)

The statements could be freely arranged with an optional

; ' if a new line is used to separate statements.
julia> begin x = 1; y = 2; x + y end
julia> (x

y
X

1;
2;
y)

+ 1

Numerical Data Types

Number

N\

Complex{T<:Real} Real

AbstractFloat Integer Irrational {sym} Rational{T<:Integer}
.

BigFloat Float16 Float32 Float64 BigInt Bool Sigmcd\’ Unsigned

— =7\ P

Int128 Int16 Int32 Int64 Int8 Ulnt128 Ulnt16 Ulnt32 Ulnt64 Ulnt8

Integer Data Types

 Type Signed? Number of bits | Smallest value | Largest value
Int8 v 8 -2"7 277 - 1
UInt8 8 (%] 2”8 - 1
Intl6 v 16 -2715 2715 - 1
UIntlé6 16 %] 2716 - 1
Int32 v 32 -2731 2"31 - 1
UInt32 32 (%] 27"32 - 1
Int64 v 64 -2763 2763 - 1
UInte4 64 (%] 27"64 - 1
Int128 v 128 -27127 272127 - 1
UInt128 128 (%] 27128 - 1
Bool N/A 8 false (0) true (1)

Handling Big Integers

An overflow happens when a number goes beyond the
representable range of a given type. Juliat provides Bigint
type to handle big integers.

julia> x = typemax(Int64)

julia> x + 1

julia> x + 1 == typemin(Inte64)
julia> x = big(typemax(Int64))"100

Floating Point Data Types

Type Precision | Number of bits | Range
Floatl6 | half 16 -65504 to -6.1035e-05
6.1035e-05 to 65504
Float32 | single 32 —-3.402823E38 to —-1.401298E-45
1.401298E-45 to 3.402823E38
Float64 | double 64 -1.79769313486232E308 to -4.94065645841247E-324

4.94065645841247E-324 to 1.79769313486232E308

Additionally, full support for Complex and Rational Numbers is built
on top of these primitive numeric types.

All numeric types interoperate naturally without explicit casting thanks
to a user-extensible type promotion system.

Handling Floating-point Types (I)

Perform each of the following calculations in your head.

julia> a = 4/3
julia> b = a - 1
julia> ¢ = 3*b
julia> e =1 - ¢

What does Julia get?

Handling Floating-point Types (Il)
What does Julia get?
julia> a = 4/3 #1.3333333333333333

julia> b = a - 1 #0.33333333333333326
julia> ¢ = 3*b #0.9999999999999998
julia> e = 1 - c #2.220446049250313e-16

i'i It is impossible to perfectly represent all real numbers using
a finite string of 1's and 0's.

Handling Floating-point Types (lIl)

Now try the following with BigFloat

julia> a = big(4)/3

julia> b =a - 1

julia> ¢ = 3*b

julia> e = 1 - ¢ #-1.7272337110188...e-77
Next, set the precision and repeat the above

julia> setprecision(4096)
BigFloat variables can store floating point data with arbitrary precision with a
performance cost.

Complex and Rational Numbers

The global constant im is bound to the complex number i, representing
the principal square root of -1.

julia> 2(1 - 1im)

julia> sqrt(complex(-1, 0))
Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal
coefficient binds more tightly than division. 3/ (4*im) !=(3/4%*1im)

Julia has a rational number type to represent exact ratios of integers.
Rationals are constructed using the // operator, e.g., 9//27

Some Useful Math Functions

Rounding and division functions

Sign and absolute value functions

Function Descrition

abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1

signbit(x) indicates whether the sign bit is on (true) or
off (false)

copysign(x,y) |a value with the magnitude of x and the sign
ofy

flipsign(x,y) a value with the magnitude of x and the sign
of x*y

Function [Descrition

round(x) round x to the nearest integer

floor(x) round x towards -Inf

ceil(x) round x towards +Inf

trunc(x) round x towards zero

div(x,y) truncated division; quotient rounded towards zero

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y) remainder; satisfies x == div(x,y)*y + rem(x,y);
sign matches x

gecd(x,y...) |greatest positive common divisor of x, y,...

lem(x,y...)

least positive common multiple of x, v,...

* The built-in math functions in Julia are
implemented in C(openlibm).

https://github.com/JuliaMath/openlibm

Chars and Strings

Julia has a first-class type representing a single character, called
Char. Single quotes are & double quotes are used different in Julia.

julia> a = 'H' #a 1is a character object

julia> b = "H" #a is a string with length 1

Strings and Chars can be easily manipulated with built-in functions.
julia> ¢ = string('s') * string('d"')
julia> length(c); d = c~10*"4"; split(d,"s")

A

Handling Strings ()

The built-in type used for strings in Julia is String. This supports the full
range of Unicode characters via the UTF-8 encoding.

Strings are immutable.

A Char value represents a single character.
One can do comparisons and a limited amount of arithmetic with Char.
All indexing in Julia is 1-based: the first element of any integer-indexed

object is found at index 1.

julia> str
julia> ¢ =
julia> ¢ =
julia> c =

= "Hello, world!"

str[1]
str[end]
str[2:8]

#c
#c
#c

IHI
l!l

"ello, w

Handling Strings (1)

Interpolation: Julia allows interpolation into string literals using $,
as in Perl. To include a literal $ in a string literal, escape it with a
backslash:
julia> "1 + 2 = $(1 + 2)" #"1 + 2 = 3"
julia> print("\$100 dollars!\n")

Triple-Quoted String Literals: no need to escape for special
symbols and trailing whitespace is left unaltered.

Handling Strings (lll)

Julia comes with a collection of tools to handle strings.

julia> str="Julia"

julia> occursin("lia", str)
julia> z = repeat(str, 10)
julia> firstindex(str)
julia> lastindex(str)
julia> length(str)

Julia also supports Perl-compatible regular expressions (regexes).

julia> occursin(r"~\s*(?:#|$)", "# a comment")

Help

= For help on a specific function or macro, type ? followed by its name, and
press enter. This only works if you know the name of the function you want
help with. With AS and *R you can also do historical search.
Julia> ?cos

= Type ?help to get more information about help

Julia> ?help

Part IV. Basics of Julia

1. Functions - Building
Blocks of Julia

function mandelbrot(a)
z=0
fori=1:50
z=z"2+a
end
return z
end
for y=1.0:-0.05:-1.0
for x=-2.0:0.0315:0.5
abs(mandelbrot(complex(x, y))) <2 ?
print("*") : print(" ")
end
printin()
end

Definition of Functions

Two equivalent ways to define a Operators are functions
function
julia> +(1,2); plusfunc=+
julia> function func(x,y) Julia> plusfunc(2,3)
return x + y, X

end Recommended style for function
definition: append ! to names of
functions that modify their
arguments

julia> Z(x,y) = X +y, X

Functions with Optional Arguments

You can define functions with optional arguments with default
values.

julia> function point(x, y, z=0)
println("$x, %y, $z")
end
julia> point(1,2); point(1,2,3)

Keywords and Positional Arguments

Keywords can be used to label arguments. Use a semicolon
after the function's unlabelled arguments, and follow it with one
or more keyword=value pairs

julia> function func(a, b, c="one"; d="two")
println("$a, $b, $c, $d")
end
julia> func(1,2); func(d="four", 1, 2, "three")

Anonymous Functions

As functions in Julia are first-class objects, they can be created
anonymously without a name.
julia> x -> 2x - 1
julia> function (x)
2x - 1
end
An anonymous function is primarily used to feed in other functions.
julia> map((x,y,z) -> X +y + z,
[1,2,3], [4, 5, 6], [7, 8, 9])

"Dotted" Function

Dot syntax can be used to vectorize functions, i.e., applying
functions elementwise to arrays.

julia> func(a, b) = a * b
julia> func(1l, 2)

julia> func.([1,2], 3)

julia> sin.(func.([1,2],[3,4]))

Function of Function

Julia functions can be treated the same as other Julia objects. You can
return a function within a function.

julia> function my_exp func(x)
f = function (y) return y*x end
return f
end
julia> squarer=my_exp_func(2); quader=my_exp func(3)
julia> squarer(3)
julia> quader(3)

Part IV. Basics of Julia

2. Data Structures: Tuples,
Arrays, Sets, and
Dictionaries

Tuples

A tuple is an ordered sequence of elements. Tuples are good for
small fixed-length collections. Tuples are immutable.

julia> t = (1, 2, 3)
julia> t = ((1, 2), (3, 4))
julia> t[1][2]

Arrays

An array is an ordered collection of elements. In Julia, arrays are used for lists,
vectors, tables, and matrices. Arrays are mutable.

julia> a = [1, 2, 3] # column vecor
julia> b = [1 2 3] # row vector
julia> ¢ = [1 2 3; 4 5 6] # 2x3 vector
julia> d = [n”*2 for n in 1:5]

julia> f = zeros(2,3); g = rand(2,3)
julia> h = ones(2,3); j = fill("A",9)

julia> k = reshape(rand(5,6),10,3)
julia> [a a] # hcat
julia> [b;b] # vcat

Array & Matrix Operations

Many Julia operators and functions can be used preceded with a dot.
These versions are the same as their non-dotted versions, and work on
the arrays element by element.

julia> b =12 3; 45 7; 7 8 9]
julia> b .+ 10 # each element + 10

julia> sin.(b) # sin function

julia> b' # transpose (transpose(b))
julia> inv(b) # inverse

julia> b * b # matrix multiplication
julia> b .* b # element-wise multiplication
julia> b .~ 2 # element-wise square

Sets are mainly used to
eliminate repeated numbers
in a sequencel/list.

It is also used to perform
some standard set
operations.

A could be created with the
Set constructor function

Sets

Examples:

julia>
julia>
julia>
julia>
julia>
julia>
julia>
julia>
julia>

months=Set(["Nov", "Dec","Dec"])
typeof (months)

push!(months, "Sept")

pop! (months, "Sept")

in("Dec", months)
m=Set(["Dec","Mar","Feb"])
union(m,months)
intersect(m,months)
setdiff(m,months)

Dictionaries

_ . . Examples:
Dictionaries are mappings
between keys and items julia> m=Dict("Oct"=>"October",
stored in the dictionaries. "Nov"=3>"November",
Alternatively one can think of "Dec"=>"December")
dictionaries as sets in which julia> m["Oct"]
something stored against julia> get(m, "Jan", "N/A")
every element of the set. julia> haskey(m, “"Jan")
To define a dictionary, use julia> m["Ja"';]="Jf"”af:y"
Dict () julia> delete!(m, "Jan")

julia> keys(m)
julia> values(m)
julia> map(uppercase, collect(keys(m)))

Part IV. Basics of Julia

3. Conditional Statements
& Loops

If Condition

False

Else

Body

Statement just
below if

Image Credit: https://www.geeksforgeeks.org

https://www.geeksforgeeks.org/

Controlling Blocks

Julia has the following controlling constructs

ternary expressions

boolean switching expressions

if elseif else end - conditional evaluation
for end - iterative evaluation

while end - iterative conditional evaluation
try catch error throw exception handling

Ternary and Boolean Expressions

A ternary expression can be constructed with the ternary operator
ll?ll and II:II,
julia> x = 1
julia> x > @ ? sin(x) : cos(x)

You can combine the boolean condition and any expression using
&& or ||,

julia> isodd(42) && println("That's even!")

Conditional Statements

julia> a = 8

Execute statements if julia> if a>1e@
condition is true. println("a > 10")
_ _ elseif a<10

There is no "switch™ and println("a < 10")
"case" statement in Julia. else

println("a = 10")
There is an "ifelse" end
statement.

julia> s = ifelse(false, "hello", "goodbye") * " world"

Loop Control Statements - for

for statements help repeatedly execute a block of code for a
certain number of iterations. Loop variables are local.

julia> for i in 90:1:10
if 1 % 3 ==
continue
end
println(i)
end
julia> for 1 in "julia"
print(l, "-~-")
end

Other Usage of for Loops

Array comprehension:
julia> [n for n in 1:10]

Array enumeration:
julia> [1i for i in enumerate(rand(3))]

Generator expressions:
julia> sum(x for x in 1:10)

Nested loop:
for x in 1:10, y in 1:10
@show (x, y)
ify%3==290
break
end
end

Loop Control Statements - while

while statements repeatedly execute a block of code as long
as a condition is satisfied.

julia> n = 1
julia> s = @
julia> while
S
n

end
julia> println(s)

n n =

Exception Handling Blocks

try ... catch construction checks for errors and handles them
gracefully,

julia> s = "test"

julia> try
s[1] = "p"
catch
println("caught an error: $e")
println("continue with execution!")
end

0015

Part V.
Plotting with Julia

UnicodePlots

UnicodePlots is simple and
lightweight and it plots directly in
your terminal (might not work
with web-based shell).

julia> using Plots
julia> unicodeplots()
julia> plot(rand(5,5),
linewidth=2, title="My
Plot")

http://docs.juliaplots.org/latest/backends/#unicodeplots

Plotly Julia Library

Plotly creates leading open
source software for Web-based
data visualization and analytical
apps. Plotly Julia Library makes
interactive, publication-quality
graphs online (not working with
web-based shell).

julia> using Plots
julia> plotly()

julia> plot(rand(5,5),
linewidth=2, title="My
Plot")

[0 Plots.il x| +

C ® file:///tmp/juliawpYE2r.html

My Plot

https://plot.ly/julia/

GR Framework

GR framework is a universal GKS QtTerm
framework for cross-platform . My Pler
visualization applications (not |

working with web-based shell).

0.75

julia> using Plots
julia> gr()

julia> plot(rand(5,5),
linewidth=4, title="My D2~
Plot", size=(1024,1024))

050 -

0.00 =1L

https://gr-framework.org/

Fractal

e Fractal refers to geometric
shapes containing detailed
structure at arbitrarily small
scales.

e Fractals appear similar at

various scales.

Credit: Fractal - Wikipedia

https://en.wikipedia.org/wiki/Fractal

Benoit Mandelbrot Set

2
Zntl = 2, T C

z and ¢ are complex numbers.
Starting with z =0.

Mendelbrot set is the set of
values of c when z_remains

bounded for a relatively large n.

http://www.youtube.com/watch?v=ay8OMOsf6AQ

Mandelbrot - Julia Version

function mandelbrot (a)
z =0
for i=1:50
z = z"2 + a
end
return z

end

for y=1.0:-0.05:-1.0
for x=-2.0:0.0315:0.5
abs (mandelbrot (complex (x, y))) < 2
? print ("*") : print(" ") # in one line
end
println ()

end

%
Fedededeokok
E
etttk
TRk KoK *
koK R R R R R Rk R
ok OK KKK kR R R OR R Rk Rk
ok ok Ok K K K SR R R ROR R R R R R R R R R R R o
o838 o ok ok K K K KK KRR R R ORRORORRR R R R RR
o o oK oK oK oK K K SRR RS OR R R R R R R R o o o o
o858 58 o o ok oK oK K K KO SRR R RO R R R o R R R R o o o R R o
* o6 o8 o8 o o oK oK oK K K K SRR R K R R R R R R o o R R o o R oo
ek RoRkRR K o6 o8 o o o oK oK K K K K SRR RS R R SRR R R o o oK o o o o o

SRR R R R o8 5 o o o oK K oK K K K SRR R R R SRR SRR SRR ok oo oo oo o
SRR AR AR AR R oK o o8 o o ok o oK o oK K oK SR R R R R R R R R R R o o o o R R
sk st oK o oK o oK o oK o o o o o o o o o o o o oK o oK K oK SR R R R R R R R R R R R o o o o R
e R R SRR SRR SRR SRR o 5 5 o o o oK oK K K SR R R R SRR SRR SRR R oK R
s o o o 2 o 2 o o o o o oK o oK o oK o SRR R R SRR SRR SRR R R 5 o o o oK oK oK K oK K R R R SRR R ok R ok R ok R o o

e e e e e e st st of o SR R o e e e o o o o o ok ok ok ok ok K K R OR ok etk e e e R oo R R RO R R Rk
e s e e e e e ofeofe o o o o o o o o o o ok ok ok ok ok ok K S e e e ettt R R R R R e e e ok ok o R R ok
sesete oo eoRoRoRoR R R ook ok ok ok ok ok ok ok K ok ettt st R R R R R e e o ok ok ok R R ok
ek e e ok ok ok o3k ok o ok ok ok ROk Ok ok ok kel et teoRoeoR koo R R R R R R R ok ok
ko RRkkk K ook ok o ok ok ok KOk ROk etttk e toRRORo ek ok ook o R R R ok ok
* ook o o ok ok ok ok K ROk etttk e oR SRR ook ok R R R R R ok ok
ook ok o ok ok ok K R OR RO kel oOR ROk Rk R R R R R R R R R R ok
L e
3% o ok ok K K K KK SRRk R R R RO R R R R R R R R
ok kR K K K SRR R R RRROR R R R R R R R R R R R o
R OK KKK R R RRRORR RO R R
* kK R R R R R R R
FEREEEEEER KK *
FE IR
L
TRk ERk
*%

The first published picture of the Mandelbrot set, by Robert W. Brooks and Peter
Matelski in 1978, reproduced with the code to the left.

Online Resources

Official Julia Document
https://docs.julialang.org/en/v1/
Julia Online Tutorials

https://julialang.org/learning/

Introducing Julia (Wikibooks.org)
https://en.wikibooks.org/wiki/Introducing_Julia
MATLAB-Python—Julia cheatsheet
https://cheatsheets.quantecon.org/

The Fast Track to Julia
https://juliadocs.github.io/Julia-Cheat-Sheet/

https://docs.julialang.org/en/v1/
https://julialang.org/learning/
https://en.wikibooks.org/wiki/Introducing_Julia
https://cheatsheets.quantecon.org/
https://juliadocs.github.io/Julia-Cheat-Sheet/

Acknowledgments

The slides are created based on the materials from Julia official website
and the Wikibook Introducing Julia at wikibooks.org.

Support from Texas A&M Engineering Experiment Station (TEES), Texas
A&M Institute of Data Science (TAMIDS), and Texas A&M High
Performance Research Computing (HPRC).

Support from NSF OAC Award #2019129 - MRI: Acquisition of FASTER -
Fostering Accelerated Sciences Transformation Education and Research
Support from NSF OAC Award #2112356 - Category II: ACES -
Accelerating Computing for Emerging Sciences

84

https://tees.tamu.edu/
https://tamids.tamu.edu/
https://tamids.tamu.edu/
https://hprc.tamu.edu/
https://hprc.tamu.edu/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2019129&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2112356

Appendix

Modules and Packages

Julia code is organized into files, modules, and packages. Files
containing Julia code use the .jl file extension. Modules can be defined
as

module MyModule

end
Julia manages its packages with Pkg
julia> Pkg.add("MyPackage")
julia> Pkg.status()
julia> Pkg.update()
julia> Pkg.rm("MyPackage")

ASCII Code

When you press a key on your computer keyboard, the
key that you press is translated to a binary code.

A = 1000001 (Decimal = 65)
a = 1100001 (Decimal = 97)
0 = 0110000 (Decimal = 48)

ASCII Code

ASCII stands for
American Standard
Code for Information
Interchange

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
0 00 MNul 32 20 Space 64 40 @ 96 60
1 01 Start of heading 33 EREE, ! 65 B A 97 NG &
2 02 Startof text 34 PG 66 42 B 98 62 b
3 03 Endoftext 35 23 # 67 a3 C 9963 ¢
4 04 End of transmit 36 24 § 68 44 D 100 64 d
5 05 Enguiry 379258 % 69 G5 E 101 EESEE &
6 06 Acknowledge 38 26 & 70 46 F 102 mmson £
7 07 Audible bell 39O BT ' 71 47 G 103 67 g
§ 08 Backspace 20 B2 88 | 727 48° H 104 68 h
9 09 Horizontal tab 41 8RZ08) 73 SRE0EN T 105 BNGSNN i
10 0& Line feed 42 BEZAGE * 74 44 J 106 6& j
11 0B Vedicaltab 43 2B + 75 4B K 107 6B k
12 0C Form feed 44 =2 G0 , 76 4C L 108 6C 1
13 0D Carriage return 45 2D - 77 4D N 1089 6D mn
14 O0E Shift out 46 IZE . T8 AES N 110 BESES n
15 OF Shiftin 47 2F / 7O RGN O 111 6F o
16 10 Datalink escape 48 30 O 80 50 P 112 B b
17 11 Device control1 49 31 1 81 SESHEN O 113 I
18 12 Device control 2 SO REGZa 2 82 85228 R 114 SR r
19 13 Device control 3 S1EESTEE 3 83 SESTEN S 115 EEaEa =
20 14 Device control 4 52 34 4 84 54 T 116 74 ¢
21 15 Neg.acknowledge 53 35S 5 S5 85 55 U 117 TSR 1
22 16 Synchronous idle 54 36 6 866 56 WV 118 76 w
23 17 Endtrans. block 55 ST 7 87 SR U 119 B v
24 18 Cancel 56 38 8 88 58 X 120 78 x
25 19 End of medium 578 39 9 §9 59 Y 121 79 v
26 1A Substitution 58 3a 90 5a Z 122 74 =z
27 1B Escape S5O SESHEE ; 91 BESHaN [123 IEaEE {
28 1C File separator 60 BT < 92 SSEEN \ 12 4 TR |
29 1D Group separator 61 3D = 93 SRS] 125 BT DEN }
30 1E Record separator 62 BRI EN > 94 S5E * 126 7E ~
31 1F Unit separator 630 03E " ? 95 SE 127 BRI O

Terminology

A bit is short for binary digit. It has only two possible
values: On (1) or Off (0).

A byte is simply a string of 8 bits.

A kilobyte (KB) is 1,024 (2*10) bytes.

A megabyte (MB) is 1,024 KB or 1,024"2 bytes.

A gigabyte (GB) is 1,024 MB or 1,024"3 bytes.

