Tutorial: Introduction to Containers for Scientific Container-Native Workflows: **Singularity** on **ACES**

Richard Lawrence 4/16/2024

High Performance Research Computing DIVISION OF RESEARCH

developed for

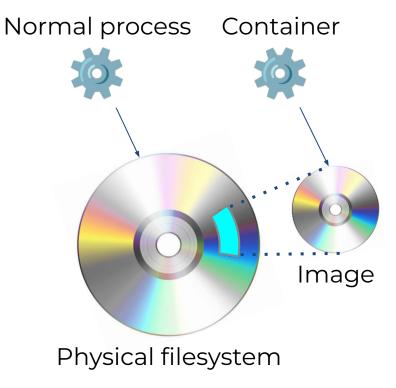
Outline

- Overview of Containers
- Overview of Singularity
- Getting Started
- Container Image Sources
- Working with Images
- Working with Containers
- Containerized Scientific Applications on ACES
 - PyTorch
 - LAMMPS

Learning Resources

- Slides on the course web page <u>https://hprc.tamu.edu/training/aces_containers_scientific.html</u> highly recommended for working along)
- HPRC's Knowledge Base
 <u>https://hprc.tamu.edu/kb/Software/Singularity/</u>
- HPRC on YouTube <u>https://www.youtube.com/c/TexasAMHPRC</u>
- ACCESS Links

https://support.access-ci.org/ci-links

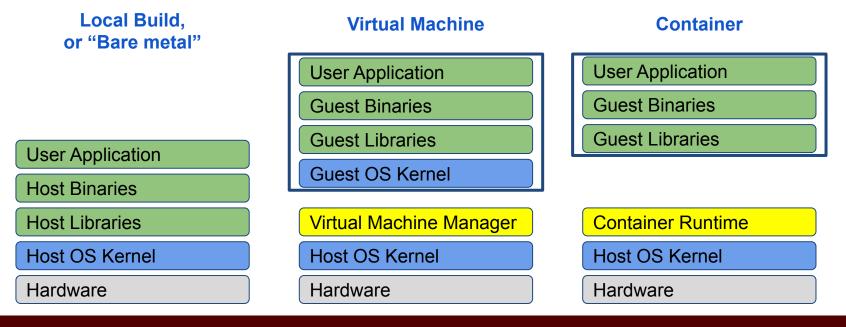

Overview of Containers

What Are Containers?

- A container is a process (*) that has its own view of local resources:
 - Filesystem
 - User IDs
 - Network etc.
- Example: this container
 (** on the right) sees the

 image instead of the
 physical filesystem

Why Use Containers?


• Shareability:

- Share your container image file by uploading to a public repository
- Use images shared by others
- Portability:
 - Use images on any computer with the same architecture (x84-64)
- Reproducibility:
 - Container users are largely unaffected by changes to the cluster environments

What Goes In Container Images?

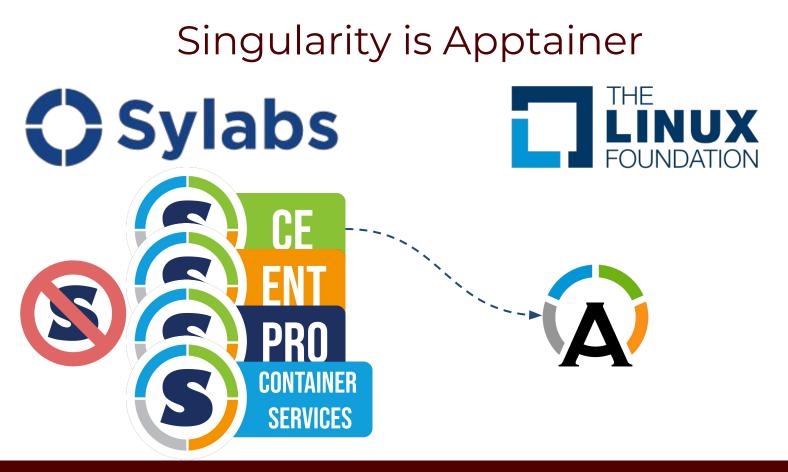
- Unlike in VMs, the OS Kernel is not duplicated
- Container images are smaller than VM images

Ā M

Popular Container Runtimes

Instant deployment to users on different devices!

Overview of Singularity


Singularity

• An easy-to-use, high-performance container solution

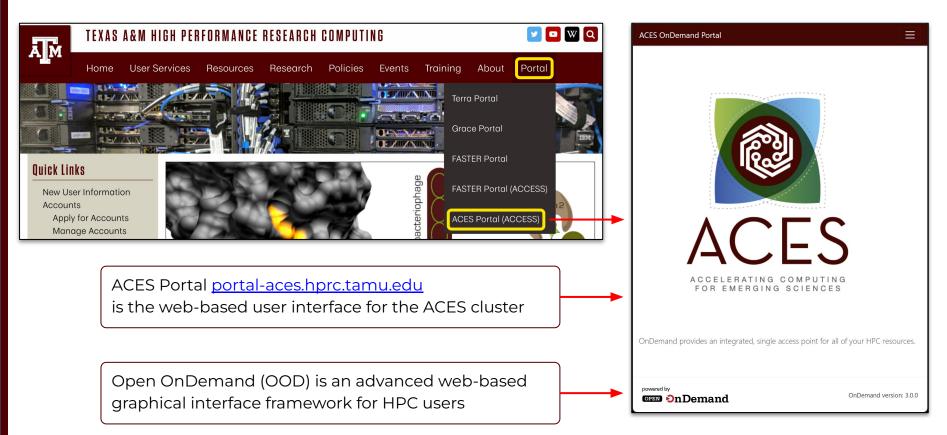
Deploying Secure Container Solutions from Edge to Exascale Presented by

Sylabs

Singularity Features

- Singularity is a container runtime and an image builder
- Singularity can read and convert Docker images
- Filesystem inside container is isolated
- User inside container is the same as the user outside
- Works with high-performance cluster technologies

Read more in the Apptainer manual <u>https://apptainer.org/user-docs/3.8/</u>


Singularity on ACES

- Singularity is available on Compute nodes
 - Singularity activities are too cpu-intensive for login nodes.
- Singularity images can be large on disk. Be aware of your storage quota. (/scratch > /home)
- Some container activities may be too I/O-intense for the shared network filesystem. Be courteous to others and use a local filesystem for large image operations.

Getting Started

ACES Portal

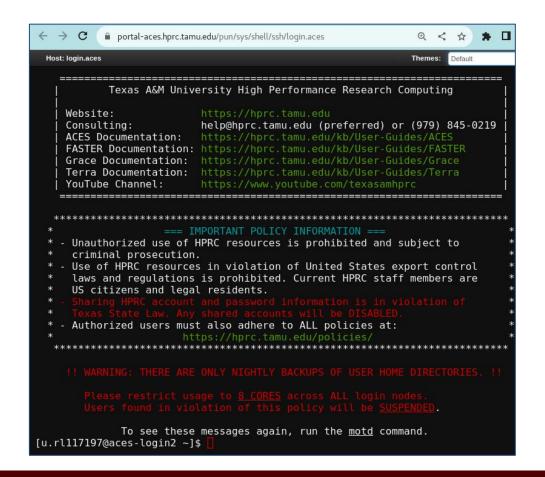
Authentication via CILogin

Powered By CILogon Consent to Attribute Release At All anon Login to CILogon

TAULIFASTER ACCESS COD requests access to the following information. If you do not approve this request, do not approve this request. Your username and attituation from your identity provider Access CI (XSEDE) - I I I I I I I I I I I I I I I I I I	[proceed.	ACCESS Username ACCESS Password Click Here for Assistance	CLOON fadilates secure access to cyberinfrastructure (ct). A flyou had an XSEE account, please enter your XSEEE username and password for ACCESS login Begister for an ACCESS Account Comparison of the ACCESS Account Provide the ACCESS A
Select an Identity Provider	Select the Ide Provider appr your account	ropriate for	

Log-in using your ACCESS CI credentials.

Get a Shell on ACES


Click on "Clusters" menu → _aces Shell Access

Success!

Welcome to the ACES login node.

Set Up Your Tutorial Environment

cd \$SCRATCH mkdir s_tutorial cd s_tutorial pwd

export TRAINING=/scratch/training/singularity
ls \$TRAINING

Set Up Your Singularity Environment

Get to a compute node from the login node srun --time=120 --mem=4G --pty bash -i

Return to your tutorial directory (if necessary) cd \$SCRATCH/s_tutorial

Set your singularity cache directory for temporary files export SINGULARITY_CACHEDIR=\$TMPDIR

Connect to the internet for fetching images module load WebProxy

Your First Singularity Container

Singularity can fetch an image and launch a shell in one line. singularity shell --help

Fetch an image and launch a shell from it singularity shell docker://almalinux:8 cat /etc/redhat-release exit

The ACES compute nodes also have Red Hat linux installed. cat /etc/redhat-release

Container Image Sources

Popular Repositories

The most common repository is:

• Docker Hub

Others repositories include:

- Singularity Hub
- Singularity Library
- NVIDIA GPU Cloud
- Quay.io
- BioContainers

See

https://hprc.tamu.edu/kb/Software/Singularity/Examples/#popular-repositories

Docker Hub Example

Docker Hub repositories are named in the form <group>/<name> similar to GitHub.

Each image within a repository has a <tag> that describes how and when it was built.

This example is jupyter/scipy-notebook:latest

			Explore F	Pricing Sign In	Sign up
Explore jupyte	r/scipy-notebook				
	jupyter/scip	oy-noteboo	k (a) Sponsored C	oss 🛣 .	
Jupyter	By Jupyter Project • Up	dated 3 days ago			
	Scientific Jupyter Note https://github.com/jup		om		
	Image Artifact				
	et - Filter Ter		0		
TAG latest		JS	Q docker pull jupy	ter/scipy-notel	b 💽
TAG latest	st Filter Tag	OS/ARCH		ter/scipy-notel	
TAG latest Last pushed 3 d	ays ago by <u>mathbunnyru</u>				
TAG latest Last pushed 3 d DIGEST	ays ago by <u>mathbunnyru</u> <u>4</u>	OS/ARCH			ED SIZE O
TAG latest Last pushed 3 d DIGEST f45db12ab76	ays ago by <u>mathbunnyru</u> <u>4</u>	OS/ARCH linux/amd64			ED SIZE O 1.24 GB
TAG latest Last pushed 3 d DIGEST f45db12ab76- 611294263f7	ays ago by <u>mathbunnyru</u> <u>4</u>	OS/ARCH linux/amd64	docker pull jupy	COMPRESS	ED SIZE © 1.24 GB 1.16 GB
TAG latest Last pushed 3 d DIGEST <u>f45db12ab76</u> <u>611294263f7</u> TAG <u>ubuntu-22.04</u>	ays ago by <u>mathbunnyru</u> <u>4</u>	OS/ARCH linux/amd64		COMPRESS	ED SIZE © 1.24 GB 1.16 GB

Singularity Pull

Singularity can fetch images from repositories and also convert them to the singularity file format at the same time.

singularity pull [target-filename] <source>

Where < source > refers to something on the internet. The syntax depends on where the source is located.

and [target-filename] includes the file extension.

Singularity Pull Example

The <source> argument for Docker images looks like docker://<group>/<name>[:<tag>]

Therefore the pull command for the Jupyter example is,

singularity pull docker://jupyter/scipy-notebook:latest

(Download now or copy from \$TRAINING; we will need this later)

The default filename will be scipy-notebook_latest.sif

Working with Images

Singularity Image Formats

- Singularity container images come in two main formats:
 - 1. Directory
 - 2. Single file. Singularity uses the SIF format for single file images. This is the default.
- The singularity build tool can convert images in both formats.

```
singularity build --help
```

• The --sandbox option is used to create directory-format images.

Singularity Image Exercise

Singularity pull can fetch an image and write to either file format. (note the order of the arguments)

singularity pull almalinux.sif docker://almalinux:8

Singularity can convert an image to the directory file format. Use the --sandbox argument to specify the directory type. (note the order of the arguments)

singularity build --sandbox \$TMPDIR/almalinux almalinux.sif

Singularity Write Exercise

Directory images are writable. Simply add the --writeable flag to your container command.

singularity shell --writable \$TMPDIR/almalinux
mkdir /my_dir
exit

Are the changes still there?
 singularity shell \$TMPDIR/almalinux
 ls /

Singularity Read-only Exercise

SIF files are safe for network file system /scratch. singularity build --fakeroot my_almalinux.sif \$TMPDIR/almalinux

Are the changes still there?
 singularity shell my_almalinux.sif
 ls /
 exit

```
What about the --writeable flag?
singularity shell --writable my_almalinux.sif
```


Working with Containers

Launching Processes

Singularity has three methods for launching processes:

- **Interactive**: singularity shell
- **Batch processing**: singularity exec
- **Container-as-executable**: singularity run

Singularity Run Exercise

Singularity run will execute the default runscript, if one was defined. You may also execute the container directly.

singularity pull docker://hello-world singularity run hello-world_latest.sif Hello from Docker! ./hello-world_latest.sif Hello from Docker!

Docker hello-world is a minimal image. This is all it can do.

Singularity Exec Exercise

Singularity Exec lets you access executables and other commands in a container. This is appropriate for batch jobs.

ACES nodes have Python 3. python3 --version Python 3.6.8

Our singularity image has a different Python 3. singularity exec scipy-notebook_latest.sif python3.11.6

Working with Files

- Filesystem inside a container is isolated from the real, physical filesystem.
- To access your files, ensure the directory is *mounted*.
- By default, Singularity will mount \$HOME and \$PWD if it can.
- To specify additional directories, use the SINGULARITY_BINDPATH environment variable or the --bind command line option.

Working with Files Exercise

Recommended that you mount / scratch to get access to your data storage, and / tmp to get access to the local disk on the node.

```
singularity shell --bind "/scratch,/tmp" <image>
mkdir $TMPDIR/my_dir; exit
ls $TMPDIR
```

Notice that your variables like \$TMPDIR get passed into the container by default.

(singularity on ACES already binds these directories by default)

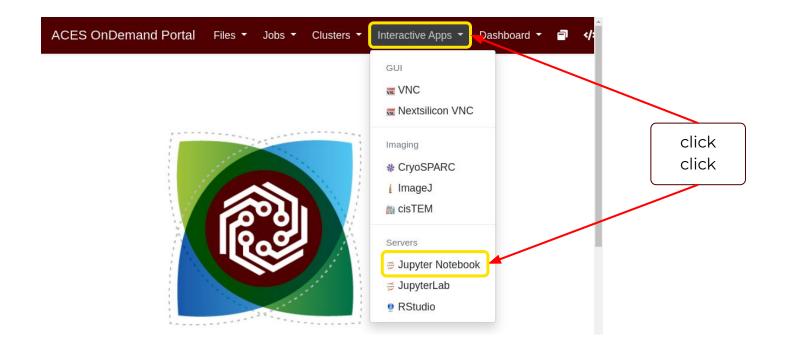
Singularity Batch Example

#!/bin/bash

JOB SPECIFICATIONS
#SBATCH --job-name=sing_test
#SBATCH --time=00:10:00
#SBATCH --ntasks=4
#SBATCH --mem=2560M
#SBATCH --output=sing test.%j

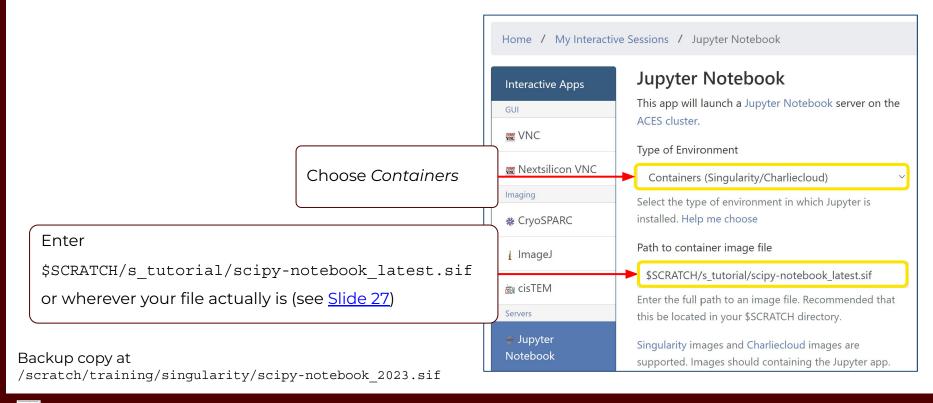
#Set the job name to "sing_test"
#Set the wall clock limit to 1hr and 30min
#Request 4 task
#Request 2560MB (2.5GB) per node
#Send stdout/err to "sing_test.[jobID]"

export SINGULARITY BINDPATH="/scratch,/tmp"

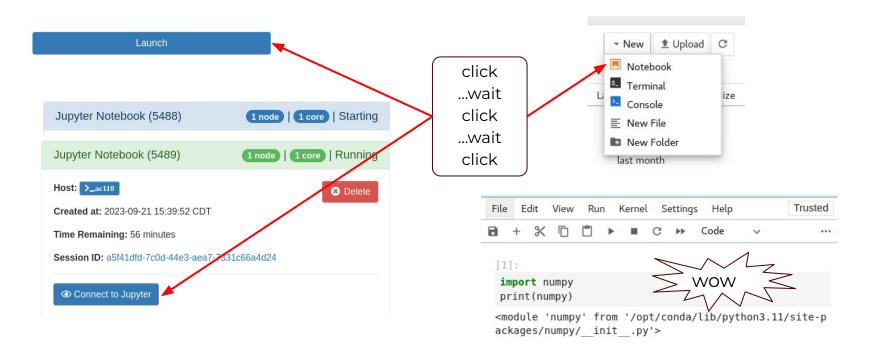

execute the default runscript defined in the container singularity run hello-world latest.sif

execute a command within container # specify the full path if the command is not in PATH singularity exec scipy-notebook latest.sif python3 hello.py **ONE VARIABLE**

2 CONTAINERS



Interactive Graphical Computing



Containerized Jupyter Notebook

...Continued

Ā M

Containerized Scientific Applications

Singularity with GPU

- Containers should be built with CUDA version compatible with local GPUs (CUDA \geq 11)
- Just add the --nv flag to your singularity command

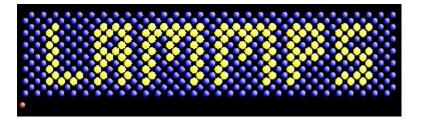
Many repositories on Docker Hub have GPU-ready images. Search for images with "gpu" in tags

The nvidia cloud also provides GPU-ready images. See: https://hprc.tamu.edu/wiki/SW:Singularity:Examples#NVIDIA_GPU_Cloud

NVIDIA Container Registry Example

PyTorch			Get Container 🗸 Deploy to Vert
<u>ဴ</u> PyTorch	Accelerated with	Overview Tags Laye 23.09-py3 PyTorch Copy the latest tag's image PyTorch nvcr.io/nvidia/pytorc PyTorch is an optimized tensor lidone with a tape-based system a View all tags	ch:23.09-py3
warning: o	do not att	high level of flexibility and speed functionality. NGC Containers are the cubicst way to get started th all dependencies included, providing an easy place	e to start developing common applications, such mmenders, and computer vision.

High Performance Research Computing | hprc.tamu.edu

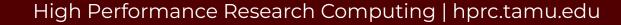

Ā M

PyTorch GPU Exercise

```
Image file: pytorch 23.09-py3.sif from
docker://nvcr.io/nvidia/pytorch:23.09-py3
Located at /scratch/training/singularity/
From the login node: (all on one line)
    srun --mem=4G --time=60
   --gres=gpu:1 --partition=gpu --pty bash -i
From the compute node: (all on one line)
    singularity exec --nv pytorch 23.09-py3.sif
   python3 -c "import torch;
   print(torch.cuda.device count())"
```

LAMMPS Molecular Dynamics on GPUs

- LAMMPS is a classical MD code
- <u>https://www.lammps.org/</u> has a cool animated logo.
- NVIDIA provides GPU-ready container images for lammps. <u>https://catalog.ngc.nvidia.com/orgs/hpc/containers/lammps</u>



LAMMPS on H100 GPUs

• This specific build works with H100 GPUs

ÅΜ

4	→ C	Catalog.ngc.nvidia.com/orgs/hpc/conta	ainers/lammps/tags					G	<	☆	*		R	:
0	NVID	DIA. NGC CATALOG									Welco	me G	uest	
*	1000 000 000 00 M	> Containers > LAMMPS									Get Cor	ntaine	er ∨	
			Overview	Tags	Layers	Security S	canning	Related Collections	2					
			Search tags										\times]
			patch_ 08/09/2023	15Jun2(3 11:34 AM	023 561.38 MB	2 Architectures	nvcr.io/hp	c/lammps:patch_15Jun2023			1.	3	V.	
	Des	scription							_					

LAMMPS on GPUs

```
Image file: lammps-nv-patch_15Jun2023.sif from
docker://nvcr.io/hpc/lammps:patch_15Jun2023
Located at /scratch/training/singularity/
From the login node: (all on one line)
```

```
srun --mem=4G --time=60
```

```
--gres=gpu:1 --partition=gpu --pty bash -i
```

From the compute node:

cd /scratch/training/singularity (all on one line):

singularity run --nv lammps-nv-patch_15Jun2023.sif
bash benchmark.sh

Acknowledgements

This work was supported by

- the National Science Foundation (NSF), award numbers:
 - 2112356 ACES Accelerating Computing for Emerging Sciences
 - 1925764 SWEETER SouthWest Expertise in Expanding, Training, Education and Research
 - 2019129 FASTER Fostering Accelerated Scientific Transformations, Education, and Research
- Staff and students at Texas A&M High-Performance Research Computing.
- ACCESS CCEP pilot program, Tier-II

High Performance Research Computing DIVISION OF RESEARCH

https://hprc.tamu.edu

HPRC Helpdesk:

help@hprc.tamu.edu Phone: 979-845-0219

Help us help you. Please include details in your request for support, such as, Cluster (Launch, ACES, Faster, Grace, ViDaL), UserID or ACCESS ID, Job information (Job id(s), Location of your jobfile, input/output files, Application, Module(s) loaded, Error messages, etc), and Steps you have taken, so we can reproduce the problem.

